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Scienti c case: measurement of the neutrino mass ν
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• Electron capture from shell ≥M1: 163Ho + e− → 163Dy∗ + νe(Ec);

• End-point shaped by
√

(Q− Ee)2 −m2
ν (the same of the β-decay);

• Searching for a tiny deformation caused by a non-zero neutrino mass to the spectrum near its
end point;

• Calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
⇒ measurement of the entire energy released except the ν energy;
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The HOLMES experiment (ERC-2013-AdG no. 340321) ν
The statistical sensitivity Σ(mν) has:

• Strong dependence on statistic: Σ(mν) ∝ Nevents
1/4

• Strong dependence on rise time pile-up: fpp ≃ AEC · τr
(AEC : pixel activity, τr : time resolution)

• Weak dependence on energy resolution ∆E;

Large arrays of fast detectors are a fundamental requirements

HOLMES target

• Microcalorimeters base on Transition Edge
Sensors with 163Ho implanted Au absorber;

• Pixel activity of AEC ∼ 300 Bq/det;

• Energy resolution: O(eV)

• Time resolution: τres ∼ 3µs (τrise ∼ 10µs);

• 1000 channels for 3 · 1013 events collected in
TM = 3 years;

• Expected Sensitivity: mν ≤ 2 eV Pile-up fraction fpp �EFWHM [eV]
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Low Temperature Microcalorimeters ν
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• The X-ray microcalorimeter ⇒ senses the heat generated by X-ray photons absorbed and
thermalized in a very low heat capacity element

• Complete energy thermalization: ionization, excitation ⇒ heat ⇒ calorimetry;

• ∆T = ∆E/C where ∆E is the released energy and C the total thermal capacity;

• Absorber with very low thermal capacity: C ↓ ⇒ ∆T ↑;

• Debye low for superconductors below TC and dielectric: C ∝ (T/ΘD)
3 ;

• A very low temperature is needed: T ↓⇒ C ↓⇒∆T ↑⇒ (T = 10 ÷ 100 mK);

• Limit to energy resolution ⇒ statistical uctuation of internal energy ∆Erms =
√
kBT2C;
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TES-based microcalorimeters ν
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• Superconductor biased in its transition ⇒ strongly temperature-dependent resistance

• ”Self-biased region” ⇒ the power dissipated in the device is constant with the applied bias;

• Electrothermal feedback: if RTES ↑ ⇒ ITES ↓ ⇒ PJ ↓ ⇒ cooling the device back to its equilibrium
state in the self-biased region;

• Low resistance: read out with SQUIDs (Superconducting Quantum Inte erence Devices);

• TES operates in series with the input coil L which is inductively coupled to the SQUID:

• Change in TES current ⇒ change in the input ux to the SQUID;
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Arrays of TES detectors ν

• Development strongly suppo ed by the X-ray astrophysics community for the past couple of decades (but
also Dark Ma er and rare events research);

• Small size ⇒ low thermal capacity C ⇒ excellent energy resolution:

∆EFWHM = 1.6 keV @ 5.9 keV and ∆EFWHM = 0.9 keV @ 1.48 keV

• Arrays can be easly fabricated using standard thin lm deposition and optical lithography techniques;

• Suitable for any application that simultaneously requires high
spectral resolving power and high collection e ciency:

• X-ray astrophysics
• Direct measurements of the neutrino mass
• X-ray and γ-ray spectroscopy for nuclear materials analysis;
• Microbeam analysis
• Beamline science

• SQUIDs enable multiplexed readout
⇒ readout of many sensors using a smaller number of ampli er channels.
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Multiplexing of TES Arrays ν
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• TDM: Time Domain Multiplexing
• TES outputs are switched by applying the bias current to one SQUID ampli er at a time;
• The outputs of many SQUIDs are added into one output channel;

• FDM: Frequency Domain Multiplexing
• TESs are voltage biased with a sinusoidal bias voltage;
• The output signal is modulated in amplitude following the TES resistance transient;
• The output of the TESs is connected to a single SQUID;
• The signal from each detector can be retrieved by using standard demodulation technique;

• CDM: Code Domain Multiplexing
• The signals from all the SQUID ampli ers are summed with di erent Walsh-matrix polarity pa erns;
• The original signals can be reconstructed from the reverse process;
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The need for speed ν
• Many current and future applications for TESs require:

• signi cantly faster pulse response
• large arrays (Npixels > 1000)

• Detectors at free-electron laser facilities
⇒ pulse response fast enough

to match repetition rates of the source;

• Neutrino endpoint (HOLMES) need enormous statistics:
⇒ large number of pixel (>1000);
⇒ high activity per pixel (∼ 300 event/sec/pixel);
⇒ faster response to avoid pile-up e ects

(that can disto spectra)

• These applications need pulse times below 200µs;

• A rapid pulse rise can facilitate the pile-up rejection but an adeguate read out bandwidth is a
fundamental requirement;

• The classical multiplexing schemas (TDM, CDM and FDM) provides a limited multiplexing factor
(< 40) and limited bandwidth (few megahe z) on single detector.
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Microwave -SQUID multiplexing ν
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• dc-biased TES inductively coupled to a dissipationless -SQUID;

• -SQUID inductively coupled to a high-Q superconducting λ/4 resonator;

• Change in TES current ⇒ change in the input ux to the SQUID;

• Change in the input ux to the SQUID ⇒ change of resonance frequency and phase;

• Each micro-resonator can be continuously monitored by a probe tone;
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Microwave -SQUID multiplexing (cont.) ν
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• By coupling many resonators to a single microwave feedline it is possible to pe orm the
readout of multiple detectors

• Sensors are monitored by a set of sinusoidal probe tones (frequency comb);

• At equilibrium, the resonator frequencies are matched to the probe tone frequencies, and so
each resonator acts as a sho to ground;

• Large multiplexing factor (> 100) and bandwidth, currently limited by the digitizer bandwidth.
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Microwave -SQUID multiplexing: ux-ramp modulation ν
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• A ux-ramp modulation is applied by a common line inductively coupled to all SQUIDs

• The signal is reconstructed by comparing the phase shi caused by the interaction of the
radiation in the TES, with the free oscillation of the SQUID, when the TES is not biased;

• Each ramp acquisition represents a sample in the reconscruted phase signal: fsample = framp

• Necessary resonator bandwidth per ux ramp: ∆fBW ≥ 2 nΦ0 framp

• To avoid cross talk ⇒ spacing between resonances S > ∆fBW

• To avoid disto ions ⇒ framp > 10/τrise (potentially reduced by a factor 2);

• Minumum number of ux cycles per ramp: nΦ0 = 2 (possibly 1.1 with di erent ramp shape).
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The Multiplexing chip ν
The core of the microwave multiplexing is the multiplexer chip
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• Superconducting 33 qua er-wave coplanar waveguide (CPW) microwave resonators;

• 200 nm thick Nb lm deposited on high-resistivity silicon (ρ > 10 kΩ·cm);

• Each resonator has a trombone-like shape with slightly di erent length;

• The SQUID loop is a second order gradiometer consisting of four parallel lobes;

• Wiring in series di erent 33-channel chips with di erent frequency band allows to increase the
multiplexing factor (daisy chain)
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Microware readout hardware implementation ν
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• A key enabling technology for large-scale microwave multiplexing is the digital approach;

• This allows to exploit standard so ware-de ned radio (SDR) used in microwave-frequency
communication.
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Bandwidth Budget and multiplexing factor ν
The number of multiplexable TES per ADC board is

nTES =
fADC · τr

2 · nΦ0 · gf · Rd
with ∆fBW ≥ 2 fr nΦ0 , S ≥ gf ∆fBW , fs = framp ≥

Rd
τr

fs = sampling rate

framp = ux ramp frequency

∆fBW = resonator bandwidth

nΦ0
= number of ux quantum per ramp

S = frequency spacing between tones

gf = guard factor between tones

τr = rise time

Rd = disto ion suppression factor (2 is Nyquist limit)

fADC = ADC bandwidth

nTES = number of TES per board

The target rise time for HOLMES is τr = 10µs

τr [µs] fr [kHz] fADC [MHz] nΦ0
∆fBW [MHz]

10 500 500 2 2

gf S [MHz] Rd nTES

7 14 5 ∼36

• The HOLMES multiplexing factor is around 32 pixels per ADC board;

• In order to cover the total 1024 pixels, 1024/32=32 ADC boards are needed;

• The typical RF bandwidth for a HEMT ampli er is from 4 to 8 GHz;

⇒ a single HEMT can amplify 4000 MHz/500 MHz=8 ADC boards;

• 4 HEMT ampli ers are needed for a total of 32 ADC boards;
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HOLMES: the multiplexer chips (µmux17a) ν
Forward transmissiom S21 of 4 di erent band chips wired in series
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• Chips speci cally designed for the HOLMES requirements:

Resonators bandwidth: ∆fBW = 2 MHz;

Resonators spacing : ∆f = 14 MHz;

Resonators depth : ∆S > 10 dB;

• From experimental characterization of 132 resonators (4 chips):

Resonators bandwidth: ∆fBW = (2 ± 0.89)MHz;

Resonators spacing : ∆f = (13.78 ± 0.95)MHz;

Resonators depth : ∆S = (28.6 ± 5.9)dB;

SQUID noise : nSQUID = (2 − 3)µΦ0/
√

Hz ∼ (23 − 35) pA/
√

Hz
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HOLMES multiplexing readout: current status ν
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• ROACH2 board for tones generation/acquisition and for digital processing;

• Custom intermediate frequency (IF) circuitry for up/down conversion;

• Working with: nΦ0 = 2, framp = 500 kHz, fADC = 512, MHz

• 16-channel rmware from NIST (uses only half of available ADC bandwidth);

• 4 pixels measurements ⇒ limited by available tone power;
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HOLMES detectors: 1stgeneration ν
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• Sensor: TES Mo/Au bilayers, critical temperature Tc = 100 mK;

• Absorber: Gold, 2µm thick for full e−/γ absorption (sidecar design);

• First 4 × 6 array prototype produced at NIST at test in Milano with µwave-readout;

• Di erent Perimeter/Absorber con gurations in order to study the detector response;
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HOLMES detectors: characterization results ν
Fluorescence source used to test the detectors response
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4 detector satis ed the HOLMES requirements

TES # ∆EAl ∆ECl ∆ECa ∆EMn τrise [µs] τsho [µs] τlong [µs]

2 8.6 ± 0.3 8.8 ± 0.7 7.8 ± 0.2 8.3 ± 0.3 11 56 220
6 6 ± 1 6.0 ± 0.4 6.4 ± 0.4 6.2 ± 0.4 12 34 170
8 4.5 ± 0.3 5.0 ± 0.5 5.0 ± 0.2 4.5 ± 0.1 13 54 220
11 4.3 ± 0.3 4.5 ± 0.3 4.6 ± 0.3 14 32 180
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HOLMES multiplexing readout: 64 channel readout ν
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HOLMES multiplexing readout: up/down conversion boards ν
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• Commercial design but customized to match the HOLMES requirements;

• Working in C-Band (4.0 to 8.0) GHz ⇒ fully compatible with the HEMT bandwidth;

• Internal or External LO Synthesizers;

• 30 dB/ 1dB step programmable RF A enuation;

• Total loss around -7 dBm ⇒ compatible with the power needed to drive 32 microresonators.

• Two boards delivered in Milano in August 2018;
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HOLMES detectors: 2ndgeneration ν

• 4 × 16 linear sub-array designed for high implant e ciency;

• First production with sensor/absorber for determining the be er pixel baseline;

• Second production with pixel baseline implemented and with 163Ho-implanted absorber;

• Read-out with the 64-channel system currently in development;

• Physics data from the rst two microcalorimeter sub-arrays sta ing from 2019;
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Conclusion ν
• TES x-ray microcalorimeters have already demonstrated high resolution and fast response
⇒ Large array of these detectors are suitable for the direct measurement of neutrino mass;

• Standard multiplexing technologies are reaching their full potential;

• For much faster and/or more numerous sensors, a wider system bandwidth is needed;

• Microwave multiplexing reached the needed matury for reading out large array of TESs;

• Microwave multiplexing is appropriate for HOLMES experiment;
• Well-matched bandwidth and peak-to-peak frequency shi ;
• Low readout noise;
• 500 kHz readout demonstrated for 4 pixels;

• The development of a 64-channel multiplexing and read out system is in progress;

• First physics measurement from the rst two sub-array sta ing from 2019;

• Final 1024-pixel con guration will follow;
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