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. e . HOLMES
Scientific case: measurement of the neutrino mass
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« Electron capture from shell > M1: 163Ho + e~ — "63Dy* 4 ve(Ec);
+ End-point shaped by 1/(Q — E¢)2 — m2 (the same of the 3-decay);

Searching for a tiny deformation caused by a non-zero neutrino mass to the spectrum near its
end point;

Calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
=- measurement of the entire energy released except the v energy;
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HOLMES

The HOLMES experiment (ERC-2013-AdG no. 340321)

The statistical sensitivity ¥(m,, ) has: Pile-up Spectrum
- Strong dependence on statistic: ¥(m,,) o< Nevents'/* 10° fp=10% E 3
+ Strong dependence on rise time pile-up: fpp ~ Agc - 7+ 3 10* E 3
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» Microcalorimeters base on Transition Edge
Sensors with '®3Ho implanted Au absorber;

Pixel activity of Apc ~ 300 Bq/det;
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Time resolution: Tres ~ 3 s (Trise ~ 10 us);

m, statistical sensitivity
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1000 channels for 3 - 10 events collected in
Tm = 3years;
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HOLMES
/

Low Temperature Microcalorimeters

Thermal Link A
X-ray (thermal conductance G)
Absorber:
©

AT [mK]

Electrical
connections

Sensor
Absorber attachment point

Thermal Link 3
(thermal conductance G) Time
ime

» The X-ray microcalorimeter = senses the heat generated by X-ray photons absorbed and
thermalized in a very low heat capacity element

» Complete energy thermalization: ionization, excitation = heat = calorimetry;

« AT = AE/C where AE is the released energy and C the total thermal capacity;
« Absorber with very low thermal capacity: C | = AT 1;
+ Debye low for superconductors below T¢ and dielectric: C oc (T/0p)%;

« Avery low temperature isneeded: T | = C | = AT 1 = (T = 10 = 100 mK);

+ Limit to energy resolution = statistical fluctuation of internal energy AEms = /kgT?C;
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HOLMES

TES-based microcalorimeters
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+ Superconductor biased in its transition = strongly temperature-dependent resistance
- "Self-biased region” =- the power dissipated in the device is constant with the applied bias;

« Electrothermal feedback: if Rres © = Ires . = P, ] = cooling the device back to its equilibrium
state in the self-biased region;

« Low resistance: read out with SQUIDs (Superconducting Quantum Interference Devices);

« TES operates in series with the input coil L which is inductively coupled to the SQUID:

» Change in TES current = change in the input flux to the SQUID;
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HOLMES
/

Arrays of TES detectors

«~— 250 um ——>

Development strongly supported by the X-ray astrophysics community for the past couple of decades (but
also Dark Matter and rare events research);

Small size = low thermal capacity C = excellent energy resolution:
AEpyim = 1.6 keV @5.9keV and  AEpyum = 0.9keV @ 1.48 keV

Arrays can be easly fabricated using standard thin film deposition and optical lithography techniques;

Suitable for any application that simultaneously requires high
spectral resolving power and high collection efficiency:
» X-ray astrophysics
« Direct measurements of the neutrino mass
« X-ray and ~-ray spectroscopy for nuclear materials analysis;
* Microbeam analysis
* Beamline science

» SQUIDs enable multiplexed readout /
= readout of many sensors using a smaller number of amplifier channels.
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Multiplexing of TES Arrays “}LMES
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« TDM: Time Domain Multiplexing

« TES outputs are switched by applying the bias current to one SQUID amplifier at a time;

« The outputs of many SQUIDs are added into one output channel;
+ FDM: Frequency Domain Multiplexing

» TESs are voltage biased with a sinusoidal bias voltage;

«+ The output signal is modulated in amplitude following the TES resistance transient;

» The output of the TESs is connected to a single SQUID;

« The signal from each detector can be retrieved by using standard demodulation technique;
+ CDM: Code Domain Multiplexing

* The signals from all the SQUID ampilifiers are summed with different Walsh-matrix polarity patterns;
« The original signals can be reconstructed from the reverse process;
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The need for speed

Andrea Giachero

Many current and future applications for TESs require:
« significantly faster pulse response
« large arrays (Ngieis > 1000)

Detectors at free-electron laser facilities
= pulse response fast enough
to match repetition rates of the source;

Neutrino endpoint (HOLMES) need enormous statistics:

= large number of pixel (>1000);
= high activity per pixel (~ 300 event/sec/pixel);
= faster response to avoid pile-up effects

(that can distort spectra)

These applications need pulse times below 200 us;

HOLMES
/

TES pulses at different peak time

« 400 ps
«180 us
«20 ps
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A rapid pulse rise can facilitate the pile-up rejection but an adeguate read out bandwidth is a

fundamental requirement;

The classical multiplexing schemas (TDM, CDM and FDM) provides a limited multiplexing factor
(< 40) and limited bandwidth (few megahertz) on single detector.
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HOLMES

Microwave rf-SQUID multiplexing
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+ dc-biased TES inductively coupled to a dissipationless rf-SQUID;

« rf-SQUID inductively coupled to a high-Q superconducting A /4 resonator;

+ Change in TES current = change in the input flux to the SQUID;

+ Change in the input flux to the SQUID = change of resonance frequency and phase;

 Each micro-resonator can be continuously monitored by a probe tone;
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HOLMES

Microwave rf-SQUID multiplexing (cont.)
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By coupling many resonators to a single microwave feedline it is possible to perform the
readout of multiple detectors

Sensors are monitored by a set of sinusoidal probe tones (frequency comb);

At equilibrium, the resonator frequencies are matched to the probe tone frequencies, and so
each resonator acts as a short to ground;

Large multiplexing factor (> 100) and bandwidth, currently limited by the digitizer bandwidth.
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HOLMES
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Microwave rf-SQUID multiplexing: flux-ramp modulation

29 —— Ramp signal ramp
’ 10 ans
o SQUID free oscillation
03 8 ¢ =9.83
= *  Free oscillation data B
A 4 ¢,=321
g 0 == Free oscillation fit: sin(w_t) K imtao
= s RIAVAVAY
051 e v Ny Ny Y\ Free oscillation fit: cos(w,t) 0D "\/\/\/
2 $,-020
1.0 = Oscillation due radiation 10020030
interaction 0
0 10 20 30 40 50
3 0 0.5 1.0 155]
Time [Samples] Time [ms]

* A flux-ramp modulation is applied by a common line inductively coupled to all SQUIDs

« The signal is reconstructed by comparing the phase shift caused by the interaction of the
radiation in the TES, with the free oscillation of the SQUID, when the TES is not biased;

» Each ramp acquisition represents a sample in the reconscruted phase signal: fampe = framp
» Necessary resonator bandwidth per flux ramp: Afgy > 2 No, Framp

 To avoid cross talk = spacing between resonances S > Afgy

« To avoid distortions = framp > 10/Tiise (potentially reduced by a factor 2);

+ Minumum number of flux cycles per ramp: ne,, = 2 (possibly 1.1 with different ramp shape).
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HOLMES

The Multiplexing chip

The core of the microwave multiplexing is the multiplexer chip
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Superconducting 33 quarter-wave coplanar waveguide (CPW) microwave resonators;

200 nm thick Nb film deposited on high-resistivity silicon (p > 10kQ-cm);

Each resonator has a trombone-like shape with slightly different length;
» The SQUID loop is a second order gradiometer consisting of four parallel lobes;

+ Wiring in series different 33-channel chips with different frequency band allows to increase the
multiplexing factor (daisy chain)
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HOLMES

Microware readout hardware implementation
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+ A key enabling technology for large-scale microwave multiplexing is the digital approach;

+ This allows to exploit standard software-defined radio (SDR) used in microwave-frequency
communication.
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HOLMES
/

Bandwidth Budget and multiplexing factor

N/
The number of multiplexable TES per ADC board is \
fanc - 7r R Ry
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2 n¢y - 9r Ry 7-,
fs = sampling rate gr = guard factor between tones
framp = flux ramp frequency T = rise time
Afgy = resonator bandwidth Ry = distortion suppression factor (2 is Nyquist limit)
Nog = number of flux quantum per ramp faoc = ADC bandwidth
S = frequency spacing between tones nres = number of TES per board

The target rise time for HOLMES is 7 = 10 us
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» The HOLMES multiplexing factor is around 32 pixels per ADC board;
* In order to cover the total 1024 pixels, 1024/32=32 ADC boards are needed;
« The typical RF bandwidth for a HEMT amplifier is from 4 to 8 GHz;
=> a single HEMT can amplify 4000 MHz/500 MHz=8 ADC boards;
» 4 HEMT amplifiers are needed for a total of 32 ADC boards;
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HOLMES: the multiplexer chips (umux17a)

HOLMES
/
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« Chips specifically designed for the HOLMES requirements:
Resonators bandwidth: Afgy = 2MHz; . B
Resonators spacing: Af = 14 MHz; 0
Resonators depth : AS > 10dB; .
« From experimental characterization of 132 resonators (4 chips): :é 6
Resonators bandwidth: Afgy = (2 4 0.89) MHz; ¢
Resonators spacing: Af = (13.78 + 0.95) MHz; ’
Resonatorsdepth:  AS = (28.6 & 5.9)dB; ® L Bey ° %

SQUID noise :

Andrea Giachero

Nsaup = (2 — 3) ubo/VHz ~ (23 — 35) pA//Hz
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HOLMES multiplexing readout: current status

HOLMES
/
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+ ROACH2 board for tones generation/acquisition and for digital processing;
« Custom intermediate frequency (IF) circuitry for up/down conversion;

» Working with: Ney = 2, framp = 500 kHz, fapc = 512, MHz

« 16-channel firmware from NIST (uses only half of available ADC bandwidth);

* 4 pixels measurements = limited by available tone power;
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HOLMES
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HOLMES detectors: 1'generation

Absorber

4 x 6 Array .

Detector Holder

« Sensor: TES Mo/Au bilayers, critical temperature T = 100 mK;
« Absorber: Gold, 2 um thick for full e~ /~ absorption (sidecar design);
« First 4 x 6 array prototype produced at NIST at test in Milano with pwave-readout;

« Different Perimeter/Absorber configurations in order to study the detector response;
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HOLMES

HOLMES detectors: characterization results
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4 detector satisfied the HOLMES requirements
TES # AEp AEg AEc, AEmn Trise [;,LS] Tshort [NS] Tlong [/JS]
2 86+03 88+07 78+02 83+0.3 n 56 220
6 6+1 6.0+04 64+04 62404 12 34 170
8 45403 50+05 50+0.2 45401 13 54 220
11 43+03 45+03 4.6+03 14 32 180
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HOLMES

HOLMES multiplexing readout: 64 channel readout
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HOLMES multiplexing readout: up/down conversion boards

HOLMES
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» Commercial design but customized to match the HOLMES requirements;

» Working in C-Band (4.0 to 8.0) GHz = fully compatible with the HEMT bandwidth;

* Internal or External LO Synthesizers;

» 30 dB/ 1dB step programmable RF Attenuation;

« Total loss around -7 dBm =- compatible with the power needed to drive 32 microresonators.

» Two boards delivered in Milano in August 2018;
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HOLMES detectors: 2"9generation
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* 4 x 16 linear sub-array designed for high implant efficiency;

« First production with sensor/absorber for determining the better pixel baseline;

« Second production with pixel baseline implemented and with '®3Ho-implanted absorber;
» Read-out with the 64-channel system currently in development;

« Physics data from the first two microcalorimeter sub-arrays starting from 2019;
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Conclusion

HOLMES

TES x-ray microcalorimeters have already demonstrated high resolution and fast response
= Large array of these detectors are suitable for the direct measurement of neutrino mass;

Standard multiplexing technologies are reaching their full potential;
For much faster and/or more numerous sensors, a wider system bandwidth is needed;

Microwave multiplexing reached the needed matury for reading out large array of TESs;

Microwave multiplexing is appropriate for HOLMES experiment;

« Well-matched bandwidth and peak-to-peak frequency shift;
« Low readout noise;
* 500 kHz readout demonstrated for 4 pixels;

The development of a 64-channel multiplexing and read out system is in progress;
First physics measurement from the first two sub-array starting from 2019;

Final 1024-pixel configuration will follow;
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