Status of the HOLMES experiment

M. De Gerone¹, D.T Becker², D.A. Bennett², M. Biasotti^{1,3}, M. Borghesi^{4,5}, G. De Bodin De Galembert⁶, M. Faverzani^{4,5}, M. Fedkevych^{1,3}, E. Ferri^{4,5}, J.W. Fowler², G. Gallucci¹, J.D. Gard², F. Gatti^{1,6}, A. Giachero^{4,5}, G.C. Hilton², J.A.B Mates², E. Maugeri⁶, A. Nucciotti^{4,5}, G. Pessina⁵, C.D. Reintsema², D.R. Schmidt², D. Schumann⁶, D.S. Swetz², J.N. Ullom², L.R Vale². ¹ Istituto Nazionale di Fisica Nucleare, Sezione di Genova, Genova, IT. 2 National Institute of Standards and Technology, Boulder, CO, USA. 3 Dipartimento di Fisica, Università degli Studi di Genova, Genova, IT. 4 Dipartimento di Fisica, Università degli Studi di Milano-

Bicocca, Milano, IT. 5 Istituto Nazionale di Fisica Nucleare, Sezione di Milano-Bicocca, Milano, IT. 6 Paul Scherrer Institute, Villigen, CH.

The assessment of the absolute v mass scale is a crucial challenge in today particle physics and cosmology. The only experimental method which can provide a model independent measurement is the investigation of end-point distortion in beta/electron capture spectra. For such a kind of experiment it is mandatory to use an isotopic species with the lowest possible Q-value, because of statistical sensitivity scales as 1/Q³. For this reason, electron capture ¹⁶³Ho decay is a good choice, having a Q-value of 2.8 keV. The HOLMES experiment will exploit a calorimetric measurement of ¹⁶³Ho decay spectrum deploying a large set of cryogenic micro-calorimeters implanted with ¹⁶³Ho. In order to get the best experimental sensitivity, it is crucial to combine high activity with very small undetected pileup contribution. Therefore, the main tasks of the experiment are: the development of ~1000 fast (3 us time resolution) cryogenic micro-calorimeters with energy resolution down to few eV; the embedding inside the arrays of the highest ¹⁶³Ho compatible with detectors' thermodynamical properties and pile-up issues, avoiding contamination from other species, mainly ^{166m}Ho; the development of an efficient high bandwidth multiplexed readout. The commissioning of the first implanted array is currently on going; the first DAQ is expected to start in 2021. Here, the status of the experiment and the first results about detector commissioning will be discussed.

¹⁶³ Ho decay via electron capture from shell ≥ M1, with Q _{EC} ~ 2.8 keV [1]:	Complex pile-up spectrum: $N_{pp}(E) = f_{pp}N_{EC}(E) \otimes N_{EC}(E)$ with $f_{eq} = A_{eq} \times T$	10 ⁻¹ 10 ⁻² 10 ⁻³ pile-up , no shake-up	Direct m_v measurement with statistical sensitivity around 1 eV using Transition Edge Sensors based microcalorimeters with ¹⁶³ Ho implanted Au absorber
$\frac{163\text{Ho} + e^- \rightarrow 163\text{Dy}^* + v_e}{dL_c} = \frac{G_\beta^2}{4\pi^2} (Q - Ec)\sqrt{(Q - Ec)^2 - m_v^2} \times \sum n_i c_i \beta_i^2 \frac{\Gamma_i}{2\pi} \frac{1}{(E - Ei)^2 + \frac{\Gamma_i^2}{2\pi}}$	Shake-up and shake-off process due to 2-holes	10^{-4}	 [2]: 6.5 x 10¹³ nuclei/det, A_{EC} ~ 300 Bq/det Energy resolution O(eV), τ ~ 1μs
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 excitation are possible: n holes excitations have much lower probability; 	10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰ 0 1000 2000 3000 4000 energy [eV]	• 1000 channels array \rightarrow 6.5 x 10 ¹⁶ total nuclei Should prove the tecnique potential and scalability by: assessing EC spectral shape and systematic errors.

tradeoff between detector activity and statistics;

needs of detector with fast resolving time

dedicated resolving algorithm.

- Calorimetric measurement of Dy* de-excitation energy E_c
- m_v sensitivity depends on Q-value and capture peak position (roughly ~1/(Q-E_{M1})³)
- τ ~ 4570y: few active nuclei needed to obtain reasonable activity (1 Bq = 2 x 10¹¹ nuclei)

Holmium production and embedding chain:

¹⁶³Ho is produced by n-activation of ¹⁶²Er sample:

- ${}^{162}\text{Er}(n,\gamma){}^{163}\text{Er}, \, {}^{163}\text{Er} + e^{-} \rightarrow {}^{163}\text{Ho} + v_e \, (\tau_{1/2} \sim 75 \text{min})$
- High yield (σ_{th}~ 20b), but contaminations from other species:
- ¹⁶⁵Ho(n,γ)¹⁶⁶mHo (β, τ_{1/2} ~ 1200y)
- ^{166m}Ho is the main source of background.
- Could come from Ho contaminations or 164 Er(n, γ)
- 2 steps purification procedure has been developed:

1) Radiochemical

purification pre and post irradiation, based on ion exchange chromatography: eliminates all species other than Ho, leaves a 166:163 ratio better than 1:1000

energy and probabilities are still uncertain;

Spectrum could be even more complicated.

Two steps approach:

- 64 channels mid-term prototype, $t_M = 1$ month, m_v sensitivity ~ 10 eV
- full scale: 512 channels, 1 x 10¹³ events collected in 3

years

TES design and production:

2 μ m Au absorber for full e⁻/ γ absorption, usage of «sidecar» configuration to avoid TES proximization and allow G engineering for τ control.

Desing optimized to obtain best compromise between energy resolution and time response: $\Delta E O(eV)$, $\tau \sim 1 \mu s$

Multistep production:

- 1. TES array is produced up to first $1\mu m$ Au layer;
- 2. ¹⁶³Ho implantation and Au co-evaporation;
- 3. 1µm Au final layer deposition;
- 4. membrane release with KOH or DRIE process.
- 4 x 16 linear array for low parasitic L and high implant efficiency

Tm 165 30.06 h 93.1 d 9.25 d β⁺ 1.9... γ 779; 2052; 184: 1274 104: 69: 241: y208: 1155: 434: 1397. 015. 700 β'... γ 243; 47; 297: 807 y 532... y 198; 816; Er 162 0.139 Er 163 75 m Er 164 1.601 Er 167 Er 166 33.503 Dy 164 28.260 σ 600 σ_{0.0} <1E-6 Tb 159

2) Mass separation based on ion implanter (E = 30

electrostatic quadrupole produces a 163Ho beam

with 4mm FWHM spot and mass separation 163/166

- 50 keV) equipped with magnetic dipole +

Pile-up implies:

better than 5σ .

¹⁶⁵Ho⁺ region, slit aperture 10 mm

RF SQUID readout with microwave multiplexing: SQUID coupled with DC biased TES and a $\lambda/4$ -wave resonant circuit:

- readout with flux ramp demodulation (common flux line inductively coupled to all SQUIDs);
- signal reconstructed by Software defined Radio Technique (ROACH2, ADC bandwidth 550MHz).
- Energy deposit in the absorber increases the temperature and therefore the TES resistance.
- 2. Change in TES current \Rightarrow change in the input flux to the SQUID;
- 3. The RF-SQUID transduces a change in input flux into a variation of resonant frequency;
- 4. The ramp induces a controlled flux variation in the RF-SQUID, which is crucial for linearizing the response.

Status and perspectives:

Source production: 3 batches have been already irradiated at ILL (Grenoble, FR), for a total of 140MBq of ¹⁶³Ho. The radiochemical separation process has been proved to work with an efficiency \geq 79%

Ion implanter: the comissioning of the machine is almost finished in Genova's INFN laboratory. Test with different targets containing 165Ho are on going.

Microcalorimeter test: several geometries were tested using ⁵⁵Fe (5.9 keV) and fluorescence source (Mn - 5.9 keV, Ca - 3.7 keV, CI – 2.6 keV, AI – 1.7 keV). A 3.5 to 5 eV energy resolution have been evaluated on those lines.

[1] A. De Rujula, M. Lusignoli Phys. Lett. B 118 (1982) 429 [2] B. Alpert et al., Eur. Phys. J. C (2015) 75:112