

The HOLMES experiment: status and perspectives

Elena Ferri for the HOLMES collaboration Università degli studi di Milano-Bicocca and INFN Sez. Milano-Bicocca

NOW2018 9-16 September 2018, Rosa Marina, Ostuni, Italy

Outline

¹⁶³Ho neutrino mass measurement

HOLMES experiment goal and design

HOLMES tasks status

- isotope production and chemical purification
- isotope mass separation and embedding
- HOLMES detectors and read-out

Conclusions and perspectives

The HOLMES collaboration

Univ. Milano-Bicocca INFN Milano-Bicocca

G.Ceruti M.Faverzani E.Ferri A.Giachero A.Nucciotti A.Orlando G.Pessina A.Puiu <u>S.Ragazzi (PI)</u>

INFN Genova M.Biasotti V.Ceriale G.Gallucci M.De Gerone F.Gatti L.Parodi F.Siccardi INFN Roma M.Lusignoli

INFN LNGS S.Nisi NIST B.Alpert D.Becker D.Bennett J.Fowler J.Gard J.Hays-Wehle G.Hilton J.Mates C.Reintsema D.Schmidt D.Swetz J.Ullom L.Vale **PSI** R.Dressler S.Heinitz D.Schumann

centra CENTRA-IST M.Ribeiro-Gomes

ILL U.Koester

HO Electron capture experiments

163
Ho + e⁻ \rightarrow 163 Dy* + ν_{e}

electron capture from shell \ge M1

A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- > calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- > rate at end-point and v mass sensitivity depend on $Q-E_{_{M1}}$
 - Q = 2.83±0.04 keV (determined with Penning trap in 2015)

> $\tau_{_{1/2}} \approx 4570$ years \rightarrow few active nuclei are needed

Ho Pile-up spectrum

- Pile-up pulse occurs when multiple events arrive within the temporal resolving time of the detector;

- The 163Ho pile-up events spectrum is quite complex and presents a number of peaks right at the end-point of the decay spectrum;
- To resolve pile-up:
 - > Detector with fast signal rise-time τ_{rise} ;
 - \succ Pulse pile-up recovery algorithms \rightarrow time resolution of ~ 1 μs with pulses with $\tau_{_{rise}}$ ~ 10 μs

¹⁶³Ho statistical sensitivity - Montecarlo simulations

M. Galeazzi et al., arXiv:1202.4763v2 A. Nucciotti, Eur. Phys. J. C, (2014) 74:3161 HOLMES

Goals

- neutrino mass measurement: *m*, statistical sensitivity around 1 eV
- prove technique potential and scalability:
 - ► assess EC *Q*-value
 - ► assess systematic errors

Detectors: Transition Edge Sensor

with ¹⁶³Ho implanted in Au absorbers

- Activity: 6.5x10¹³ nuclei per detector → 300 dec/s
- **Performances:** $\Delta E \approx 1 \text{ eV}$, $\tau_R \approx 1 \mu \text{s}$

64 channel demonstrator

Final configuration: 1000 channel array

- 6.5×10^{16 163}Ho nuclei

- 3×10^{13} events in 3 y

→ Project Started on February 1st 2014

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112 http://artico.mib.infn.it/holmes

Effect of background on sensitivity

HOLMES

Background

- environmental γ radiation
- $\gamma,$ X and $~\beta$ from close surroundings
- cosmic rays

```
HOLMES target
for A<sub>EC</sub> = 300 Bq
bkg < ≈0.1 c/eV/day/det
```

Au pixel 200×200×2 µm³

▷ GEANT4 → bkg ≈ 5×10^{-5} c/eV/day/det (0 - 4 keV)

MIBETA experiment: 300×300×150 µm³ AgReO₄ crystals at sea level *bkg*(2-5keV)≈1.5×10⁻⁴ c/eV/day/det

- internal radionuclides

- \rightarrow ^{166m}Ho (β^- , Q = 1.8 MeV, τ_{γ_2} = 1200 y, produced along with ¹⁶³Ho)
- \rightarrow GEANT4 \rightarrow bkg \approx 0.5 c/eV/day/det/Bq(^{166m}Ho)
- $\rightarrow A(^{163}Ho) = 300Bq/det (\leftrightarrow \approx 6.5 \times 10^{13} nuclei/det)$

 $bkg(^{166m}Ho) < 0.1 c/eV/day/det \rightarrow A(^{163}Ho)/A(^{166m}Ho) > 1500$

 $\rightarrow N(^{163}Ho)/N(^{166m}Ho) > 6000$

- a bkg measurement is under way with HOLMES detectors

¹⁶³Ho production

- ¹⁶² Er irradiation at ILL nuclear reactor @ Grenoble: **high thermal n flux 1.3x10 15 n/cm ² /s**

- cross section burn up ¹⁶³ Ho(n, γ) ¹⁶⁴ Ho not negligible (~ 200 b)
- ¹⁶⁵ Ho(n, γ) (mostly from ¹⁶⁴ Er(n,g)) \rightarrow ^{166m} Ho, β ⁻, t _{y₂} = **1200** y, Q = **1.8** MeV

 \rightarrow A(¹⁶³ Ho)/A(^{166m} Ho) = 100 ~ 1000

- chemical pre-purification and post-separation at PSI (Villigen, Switzerland)

- HOLMES needs ~ 200 MBq of 163 Ho *

*depends on the actual global embedding process efficiency

15 September, 2018

HOLMES source production

- Enriched Er₂O₃ samples irradiated @ **ILL**, pre/post processed @ **PSI** and :
 - 25 mg (enriched ~28%) irradiated for 55 days @ILL \rightarrow 5 MBq (6 kBq) of ¹⁶³Ho (^{166m}Ho)
 - 150 mg (enriched ~26.5%) irradiated for 53 days @ILL \rightarrow 23 MBq (37 kBq) of ¹⁶³Ho (^{166m} Ho)
 - 544 mg (enriched ~25%) irradiated for 50 days @ILL. Expected in 2018: 108 MBq (200 kBq) of 163 Ho (166m Ho)
- total of $\sim 100 \text{ MBq}$ (243 kBq) of 163 Ho (166m Ho): enough for R&D and 500 pixels
- Ho radiochemical separation with ion-exchange resins in hot-cells at PSI
- efficiency \geq 79%

HOLMES mass separation and ion implanter

- extraction voltage 30-50 kV \rightarrow 10-100 nm implant depth
- $-^{163}$ Ho / 166m Ho separation better than 10^{5}
- testing/optimization in progress

Ion source sputter target production 1

- Sputter target for ion-implanting has to be in metallic form for possible extraction efficiency loss
- Enriched $Er_2O_3 \rightarrow Ho_2O_3$
- Thermoreduction/distillation in furnace to obtain the metallic Ho target for implanta

 $Ho_2O_3 + 2Y(met) \rightarrow 2Ho(met) + Y_2O_3 @ T > 1600 °C$

- distillation efficiency \approx 70% (preliminary)

evaportated metallic holmium

Ion source sputter target production 2

Sputter target for ion-implanting has to be in metallic form for possible extraction efficiency loss

- > work in progress to produce the sputter target
- ➤ sintering of Ho with other metals
- > production of targets with different metals to test the implanting efficiency

high pressure + heat treatment

HOLMES

- Transition edge sensors

- > good energy resolution: few eVs @ Q-value
- > compatible with ion-implanting
- > detectors intrinsically fast O(100 ns) slowed down to ~ 20 μ s for bandwidth limitations
 - \succ effective time resolution better than rise time \rightarrow pile-up discrimination
- > 300 Hz/pixel: excess of heat capacity? Degradation of detector performances? To be investigated...

- Microwave multiplexing

- ➤ rather simple readout scheme
- > compatible with fast sampling rate & intrinsic energy resolution

- DAQ based on Software Defined Radio

> multiplexing factor limited by bandwidth of the ADC

Detectors

Transition Edge sensors: exploit the strong dependence of R vs T of a superconductor kept in its transition

fast detector response for high counting rate

≻ signal rise time determined by electrical cut-off (L/R)

➤ signal decay time (at the first order) set by C/G: large G to reduce dead time

¹⁶³Ho ion-implanted gold absorber thermally coupled to the sensor

"side-car" geometry to prevent proximity effect

absorber thickness determined by stopping power of electrons and photons

Detector fabrication

- TES originally fabricated at NIST, Boulder, CO, USA
- $^{\mbox{\tiny 163}}\mbox{Ho}$ implantation and final 1 $\mu\mbox{m}$ Au layer deposition at INFN, Genova, Italy
- final micromaching step definition in progress (SiN membrane release)
- HOLMES 4 x 16 linear sub-array for low parasitic L and high implant efficiency

- ¹⁶³Ho concentration in absorbers saturate because ¹⁶³Ho sputters off Au from absorber
- effect compensated by Au co-evaporation (also for heat capacity reasons)
- final 1 μm Au layer deposited in situ to avoid oxidation

Target Chamber 2

Ion Beam sputter system for on-line deposition

- Up to 4 ECR ion beam sources
- Testing/optimization in progress with 1 ECR source
 - \rightarrow Au deposition rate control and maximization
 - \rightarrow Au film quality and uniformity characterization

TES holder

Detector array fabrication

two options for membrane release (i.e. final array fabrication step)

beam

FWHM width

- Silicon Deep Reactive Ion Etching (DRIE)
- best for close packing and high implant efficiency
- not yet properly tuned \rightarrow work in progress

- Silicon KOH anisotropic wet etching
- requires more spacing between pixels
- succesfully tuned \rightarrow HOLMES baseline

15 September, 2018

RF-Squid read out with multiplexing microwave

- RF- SQUID coupled with DC biased TES and a λ/4-wave resonant circuit
- RF-SQUID read out with flux ramp demodulation (common flux line inductively coupled to all SQUIDs)
- Signal reconstructed by Software Defined Radio Technique (ROACH 2, ADC bandwidth 550 MHz)
- 1. An event in the absorber increases the temperature and therefore the resistance of the TES;
- 2. Change in TES current ⇒ change in the input flux to the SQUID;
- 3. The RF-SQUID transduces a change in input flux into a variation of resonant frequency;
- 4. The ramp induces a controlled flux variation in the rf-SQUID, which is crucial for linearizing the response.

HOLMES

The signal is reconstructed by comparing the phase shift caused by the interaction of the radiation in the absorber, with the free oscillation of the SQUID, when the TES is not biased.

TES microwave multiplexing with RF-SQUID ramp modulation + ROACH2-based Software Defined Radio (SDR)

DAQ Bandwidth budget

The detector design is mostly driven by the read-out bandwidth requirements.

- Effective sampling rate is set by the ramp: $f_{ramp} = f_{samp}$
- Necessary resonator bandwidth per flux ramp: $f_{res} \ge 2n_{\Phi_0} f_{samp}$
- To avoid cross talk spacing between resonances: $f_n \ge g_f f_{res}$ [$g_f = 7$]
- To avoid distortions (signal BW): $f_{samp} \ge \frac{R_d}{\tau_{rise}} \approx \frac{5}{\tau_{rise}}$ [τ_{rise} exponential]
- Available ADC bandwidth $\rm f_{_{ADC}}$ with ROACH2 system 550 MHz
- Multiplexing factor:

$$n_{TES} = \frac{f_{ADC}}{f_n} \le \frac{f_{ADC} \tau_{rise}}{2 R_d g_f n_{\Phi_0}} \approx \frac{f_{ADC} \tau_{rise}}{140}$$

for fixed \mathbf{f}_{ADC} =500MHz and \mathbf{n}_{TES} ≈35 $\leftrightarrow \tau_{Tise}$ ≈10µs with \mathbf{f}_{samp} =0.5MHz

TES read out with ROACH2

With the 550 MHz ADC BW of the ROACH2, 500 kHz effective pulse sampling, 14 MHz resonance spacing, 2 MHz resonance width and $2\Phi_0$ SQUID oscillation/ramp \rightarrow 33 multiplexable channels per

Detector testing with HOLMES DAQ

HOLMES

Conclusion

The HOLMES experiment will performe a direct measurement of the neutrino mass by using microcalorimenter with 163 Ho-implanted absorber:

- first detector arrays are being fabricated at NIST
- first ion implantation tests with ¹⁶³Ho before the end of 2018
 - first not-optimized ion implanted detectors late in 2018
- ¹⁶³Ho implanted activity optimized during 2019
 - ► first high ¹⁶³Ho activity array running in 2019
 - ► 1 month data taking can provide a m_v statistical sensitivity $\approx 10 \text{ eV}$
 - full array deployment will follow