

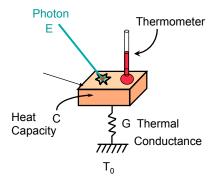
Pixel Design for HOLMES

motivation, design, and performance

James Hays-Wehle

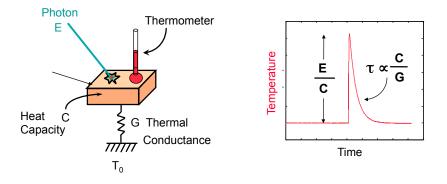
INFN Sezione di Milano-Bicocca

National Institute of Standards and Technology



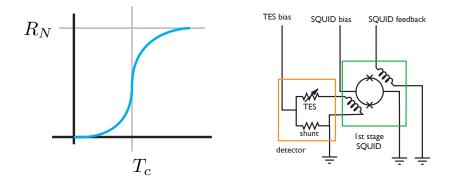
Contents

- 1 The Transition Edge Sensor (TES) Microcalorimeter
- 2 Special considerations for HOLMES
- 8 Prototype Performance and Conclusions



The microcalorimeter

The microcalorimeter



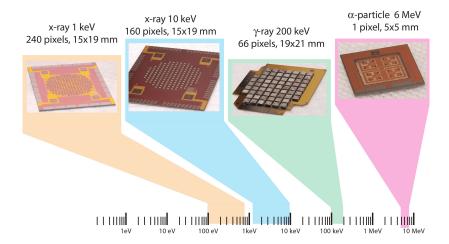
Microcalorimeter

- bulk absorbs energy, converts to heat
- thermometer reads increase in temperature
- · pulse shape determined by thermal properties

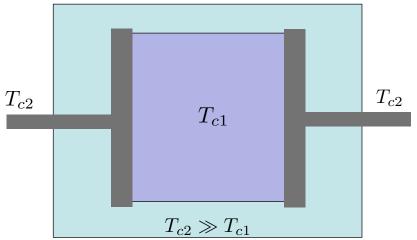
The Transition Edge Sensor

- superconductor at its transition temperature, T_C typically ~ 100 mK
- within the transition, small temperature excursions result in large resistance change
- current change read out by SQUID

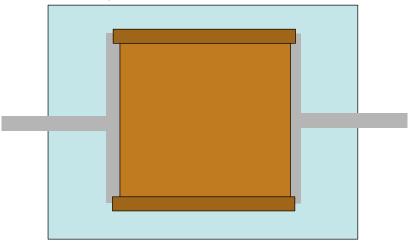
Uses for TESs

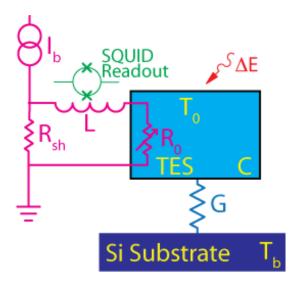

Deployed TES spectrometers

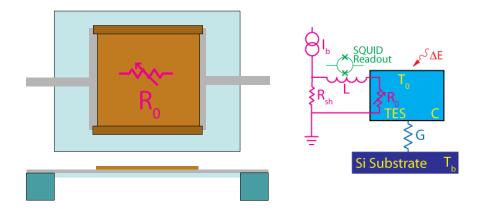
NIST TES spectrometers with worldwide collaborators


Energy Range of TES microcalorimeters

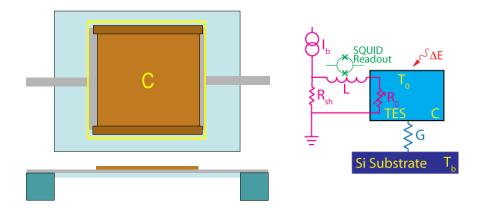
Many arrays of pixels used for all sorts of spectrometers.

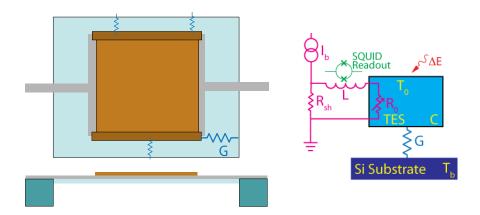

Basic TES design

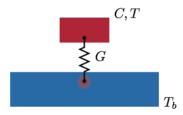

Basic TES design



Schematic representation of TES microcalorimeter




Correspondence to Schematic


Correspondence to Schematic

Correspondence to Schematic

0.06 Resistance (Ω) 0.04 0.02 0

Important Parameters

• C, heat capacity

$$C \equiv \frac{\partial E}{\partial T}$$

• G, thermal conductivity

$$G \equiv \frac{\partial P}{\partial T}$$

• α , temperature sensitivity

$$\alpha \equiv \frac{T}{R} \frac{\partial R}{\partial T}$$

$$\beta \equiv \frac{I}{R} \frac{\partial R}{\partial I}$$

Parameters determine behavior of device:

Resolution

$$\Delta E \propto \sqrt{rac{4k_BT^2C(1+eta)}{lpha}}$$

Rise Time

$$au_+ pprox rac{L}{R_L + R_0(1+eta)}$$

Fall Time

$$au_{-} pprox rac{C}{G} rac{1+eta}{1+eta+rac{lpha P_{J}}{GT_{c}}}$$

(In low inductance, high gain limit)

Important Parameters

• C, heat capacity

$$C \equiv \frac{\partial E}{\partial T}$$

G, thermal conductivity

$$G \equiv \frac{\partial P}{\partial T}$$

α, temperature sensitivity

$$\alpha \equiv \frac{T}{R} \frac{\partial R}{\partial T}$$

$$\beta \equiv \frac{I}{R} \frac{\partial R}{\partial I}$$

Parameters determine behavior of device:

Resolution

$$\Delta E \propto \sqrt{\frac{4k_B T^2 C(1+\beta)}{lpha}}$$

Rise Time

$$au_+ pprox rac{L}{R_L + R_0(1+eta)}$$

Fall Time

$$au_{-} pprox rac{C}{G} rac{1+eta}{1+eta+rac{lpha P_{J}}{GT_{c}}}$$

(In low inductance, high gain limit)

Important Parameters

• C, heat capacity

$$C \equiv \frac{\partial E}{\partial T}$$

G, thermal conductivity

$$G \equiv \frac{\partial P}{\partial T}$$

α, temperature sensitivity

$$\alpha \equiv \frac{T}{R} \frac{\partial R}{\partial T}$$

$$\beta \equiv \frac{I}{R} \frac{\partial R}{\partial I}$$

Parameters determine behavior of device:

Resolution

$$\Delta E \propto \sqrt{\frac{4k_B T^2 C(1+\beta)}{lpha}}$$

Rise Time

$$au_+ pprox rac{L}{R_L + R_0(1+eta)}$$

Fall Time

$$au_{-} pprox rac{C}{G} rac{1+eta}{1+eta+rac{lpha P_{J}}{GT_{c}}}$$

(In low inductance, high gain limit)

Important Parameters

• C, heat capacity

$$C \equiv \frac{\partial E}{\partial T}$$

G, thermal conductivity

$$G \equiv \frac{\partial P}{\partial T}$$

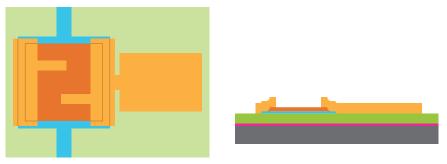
α, temperature sensitivity

$$\alpha \equiv \frac{T}{R} \frac{\partial R}{\partial T}$$

$$\beta \equiv \frac{I}{R} \frac{\partial R}{\partial I}$$

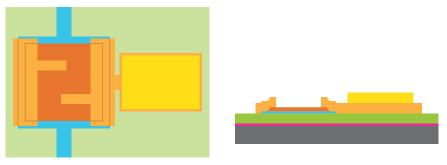
Unique Requirements of the HOLMES Pixel

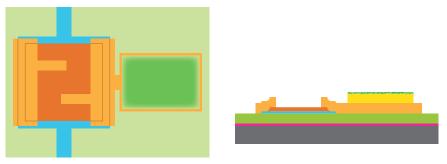
- Compatibility with ion implantation
- Compatibility with multiplexing
- Compatibility with high count rate



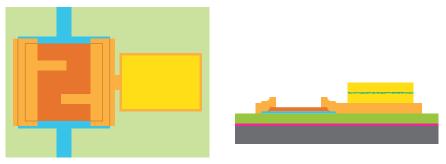
Unique Requirements of the HOLMES Pixel

Compatibility with ion implantation


- Compatibility with multiplexing
- Compatibility with high count rate



- Ion absorber pad to the side
- Thermal link is integrated copper structure
- 1 µm layer of gold
- Implanted holmium capped with more gold



- · Ion absorber pad to the side
- Thermal link is integrated copper structure
- 1 µm layer of gold
- Implanted holmium capped with more gold

- Ion absorber pad to the side
- Thermal link is integrated copper structure
- 1 µm layer of gold
- Implanted holmium capped with more gold

- Ion absorber pad to the side
- Thermal link is integrated copper structure
- 1 µm layer of gold
- Implanted holmium capped with more gold

Unique Requirements of the HOLMES Pixel

Compatibility with ion implantation

- Compatibility with multiplexing
- Compatibility with high count rate

Unique Requirements of the HOLMES Pixel

- Compatibility with ion implantation
- Compatibility with multiplexing
- Compatibility with high count rate

Given a fixed amount of time, bandwidth, and ¹⁶³Ho, one could:

· Concentrate all material into one non-multiplexed super fast detector

Given a fixed amount of time, bandwidth, and ¹⁶³Ho, one could:

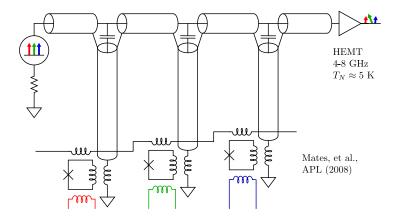
- Concentrate all material into one non-multiplexed super fast detector
- Spread holmium throughout a megapixel array, with slow detectors and small per pixel bandwidth

Given a fixed amount of time, bandwidth, and ¹⁶³Ho, one could:

- Concentrate all material into one non-multiplexed super fast detector
- Spread holmium throughout a megapixel array, with slow detectors and small per pixel bandwidth
- Or some reasonable middle ground

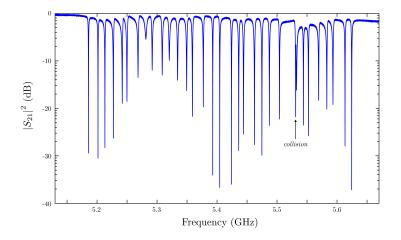
Given a fixed amount of time, bandwidth, and ¹⁶³Ho, one could:

- Concentrate all material into one non-multiplexed super fast detector
- Spread holmium throughout a megapixel array, with slow detectors and small per pixel bandwidth
- Or some reasonable middle ground
- HOLMES has picked the middle path:
 - 1000 pixels
 - 300 Hz activity
 - 500 kHz sampling rate

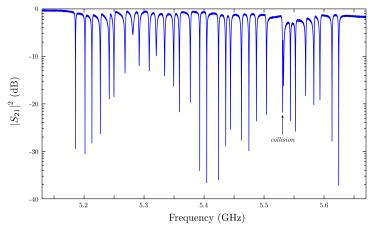

Given a fixed amount of time, bandwidth, and ¹⁶³Ho, one could:

- Concentrate all material into one non-multiplexed super fast detector
- Spread holmium throughout a megapixel array, with slow detectors and small per pixel bandwidth
- Or some reasonable middle ground
- HOLMES has picked the middle path:
 - 1000 pixels
 - 300 Hz activity
 - 500 kHz sampling rate

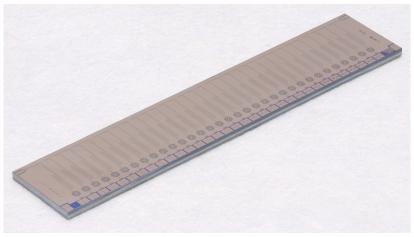
See F. Ferri talk next!



Multiplexing Scheme



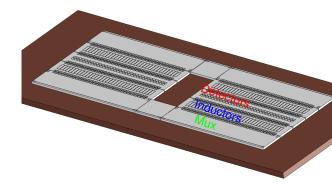
Multiplexer


- 2 MHz per channel full bandwidth
- allows \sim 30 channels to fit onto a 550 MHz ROACH2 ADC

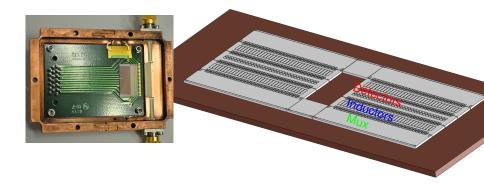
Multiplexer

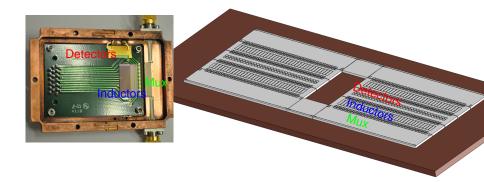
- 2 MHz per channel full bandwidth
- allows \sim 30 channels to fit onto a 550 MHz ROACH2 ADC
- + $2\Phi_0$ ramp \rightarrow corresponds to a sampling rate of 500 kHz
- imposes speed limit on rise time <1 A/s or $au_+ >$ 40 μ s

Multiplexer

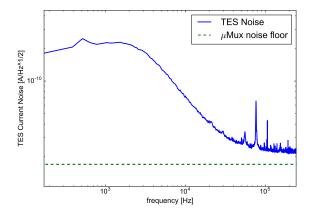


- 2 MHz per channel full bandwidth
- allows \sim 30 channels to fit onto a 550 MHz ROACH2 ADC
- + $2\Phi_0$ ramp \rightarrow corresponds to a sampling rate of 500 kHz
- imposes speed limit on rise time <1 A/s or $\tau_+ >$ 40 μ s


• Modular design allows for separate development of constituent parts.


• Modular design allows for separate development of constituent parts.

• Modular design allows for separate development of constituent parts.



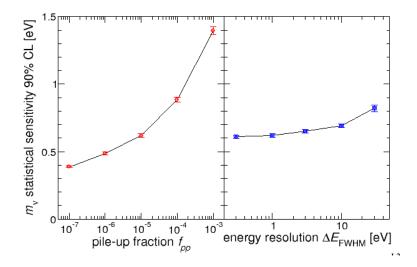
- Modular design allows for separate development of constituent parts.
- Inductance selectable for altering rise time

Expectations for μ **Mux**

- TES Johnson noise dominates signal to noise, readout a non-issue
- Tested μ Mux device has noise comparable to TDM system
- (pprox 23 pA/ $\sqrt{\mathrm{Hz}}$)

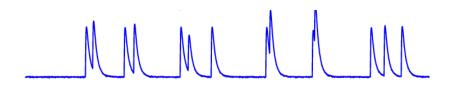
Unique Requirements of the HOLMES Pixel

- Compatibility with ion implantation
- Compatibility with multiplexing
- Compatibility with high count rate



Unique Requirements of the HOLMES Pixel

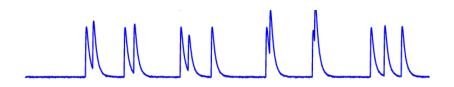
- Compatibility with ion implantation
- Compatibility with multiplexing
- Compatibility with high count rate



Compatibility with High Count Rate

Final sensitivity on m_{ν_e} depends mostly on statistics and pileup. Energy resolution only a slight concern.

Two issues with pile-up

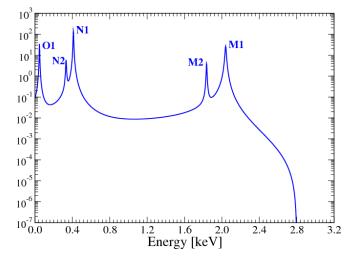


Identifying Pile-up

· Coincident pulses that could distort spectra can be cut

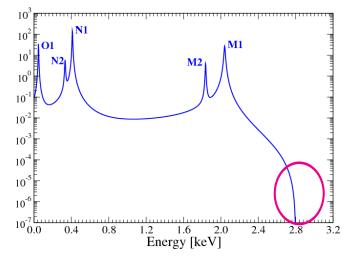
Two issues with pile-up

Identifying Pile-up

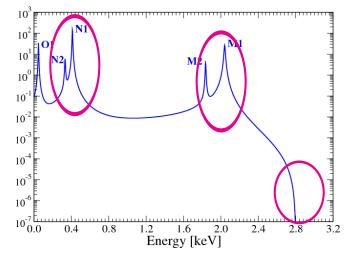

Coincident pulses that could distort spectra can be cut

Preventing Pile-up

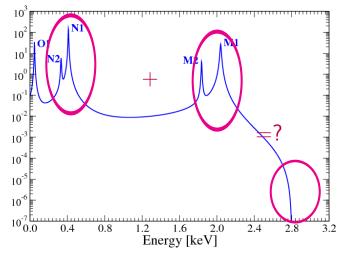
- Need to integrate many events in a few years
- 300 Hz/pixel planned
- Piled-up pulses are difficult to analyze



Pile-up in HOLMES


• Two common events could be coincident enough to fake a rare one.

Pile-up in HOLMES


• Two common events could be coincident enough to fake a rare one.

Pile-up in HOLMES

• Two common events could be coincident enough to fake a rare one.

Pile-up in HOLMES

- Two common events could be coincident enough to fake a rare one.
- Identification depends on both sampling and rise time.
- See E. Ferri, next and B. Alpert, 16:30 Today

Two issues with pileup

Identifying Pile-up

Want pulse with short rise time

Two issues with pileup

Identifying Pile-up

Want pulse with short rise time

Preventing Pile-up

Want pulse with short duration

We want:

Total pulse duration < 3 ms

We want:

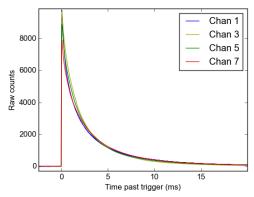
- Total pulse duration < 3 ms
- $\tau_+ < \sim 20 \mu s$ (for pileup)

We want:

- Total pulse duration < 3 ms
- $\tau_+ < \sim 20 \mu s$ (for pileup)
- $\tau_+ > \sim 40 \mu s$ (for multiplexing)

We want:

- Total pulse duration < 3 ms
- $\tau_+ < \sim 20 \mu s$ (for pileup)
- $\tau_+ > \sim 40 \mu s$ (for multiplexing)
- And △E < 10 eV


Control of fall time

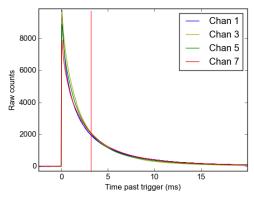
TES parameters

- C, and α set by targeted energy range. (For HOLMES, ~3 keV)
- $E_{\rm max} \propto C/\alpha$
- Pulse speed chiefly determined by thermal conductance
- $\tau_{-} \propto C/G$

Goal

Increase G to improve pixel speed

Pulses from non-HOLMES X-ray pixels. $\tau > 1$ ms


Control of fall time

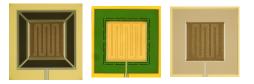
TES parameters

- C, and α set by targeted energy range. (For HOLMES, ~3 keV)
- $E_{\rm max} \propto C/\alpha$
- Pulse speed chiefly determined by thermal conductance
- $\tau_{-} \propto C/G$

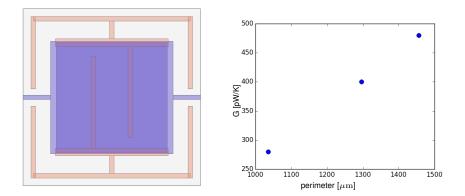
Goal

Increase G to improve pixel speed

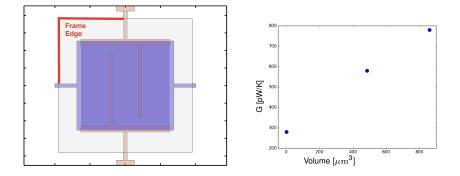
Pulses from non-HOLMES X-ray pixels. $\tau > 1$ ms


Historical control of G

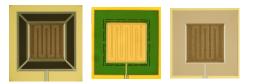
• TES thermally isolated on a SiN_x membrane.


Historical control of G

- TES thermally isolated on a SiN_x membrane.
- Perforated membranes used for *smaller G* to meet bandwidth constraints.
- Bare silicon G too much, fixed.

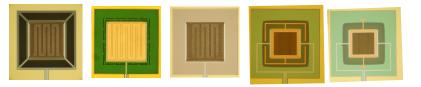


G increasing feature: perimeter


- On a membrane, G scales with perimeter.
 - Understood from 2-D ballistic phonon transport
- Test design doubles G relative to baseline device

G increasing feature: patches

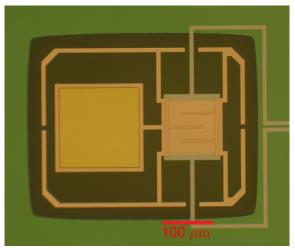
- Copper patches create thermal link directly to the frame
- Added G increases linearly with metal volume on frame
 - Understood from e-p coupling theory
- Test design trebles G of baseline device



NGT National Institute of Standards and Technology • U.S. Department of Commerce

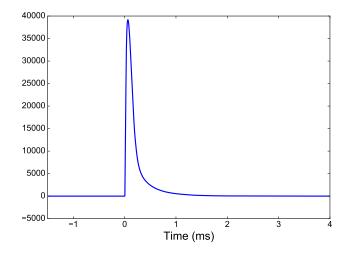
JPHW (INFN&NIST) - TES for HOLMES - 7 April 2016 - Slide 31/38

10 pW/K

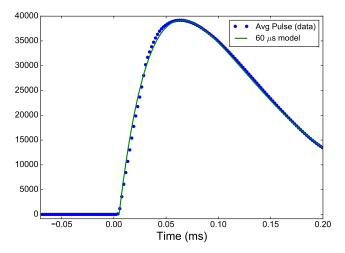

1 nW/K

Predictable lithographic control of G over an order magnitude.

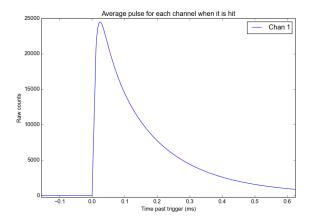
Hays-Wehle et al., "Thermal Conductance Engineering for High-Speed TES Microcalorimeters" J. Low Temp. Phys. 2016 doi:10.1007/s10909-015-1416-5



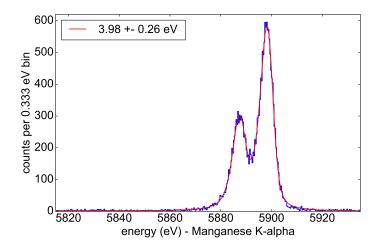
Device features


Device has sidecar absorber AND enhanced perimeter

Prototype speed


- G increased ~6x (570 pW/K from ~100 pW/K)
- Total pulse duration < 1 ms

Prototype speed (high L)


- G increased to 570 pW/K (from ~100 pW/K)
- $au_+ pprox au_- pprox$ 60 $\mu {
 m s}$ (Critically damped)
- At target sample rate (500 kHz) sufficient points on rising edge
- Sparser sampling introduces distortions

Prototype speed (low L)

- Different choice of inductance gives faster rise time
- $au_+ pprox 10 \mu {
 m s}$ shown above, but also $au_- pprox 130 \mu {
 m s}$
- Requires > MHz sampling rate

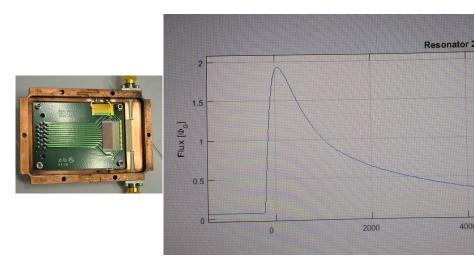
Prototype Resolution

- 4 eV FWHM resolution demonstrated at 5.9 keV with TDM
- ~3 eV expected at 2.8 keV

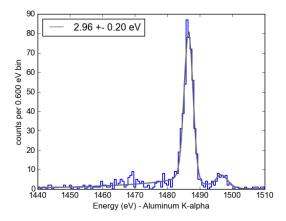
Conclusions

- HOLMES has unique requirements for its sensors
- Rise and fall times are tuned with L and G to match requirements
- · Can be tuned again for future upgrades
- Prototype design soon to be used in implanted production arrays

Thank You!



Latest News


Latest News

On our way to validating this configuration in Milano!

resolution at 1.5 keV

3 eV shown at 1.5 keV, closer to 2.8 keV than 5.9 keV is.

Performance Metrics

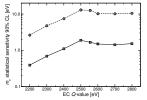


Fig. 4 Monte Carlo estimate of HOLMES neutrino mass statistical sensitivity for $N_{ev} = 3 \times 10^{13}$ (lower) or 10^{10} (upper) and with $f_{ppe} = 3 \times 10^{-4}$, $\Delta E_{\rm FWHM} = 1 \, {\rm eV}$, and no background.

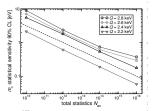
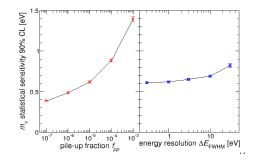
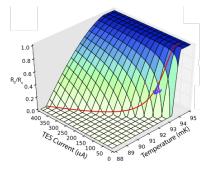
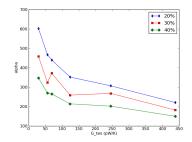
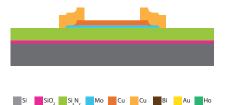




Fig. 3 ¹⁶³Ho decay experiments statistical sensitivity dependence on the total statistics N_{ev} for $\Delta E_{\rm FWHM}$ = 1 eV; $f_{pp} = 10^{-5}$, and no background.



Final sensitivity on m_{ν_e} depends mostly on statistics and pileup.

Bonus Challenge

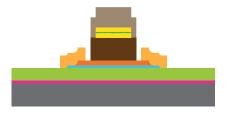

R(I, T) surface in the 2-fluid model. D. Bennett et al DOI:10.1007/s10909-011-0431-4

Previous experiments show a decreasing trend of α with G.

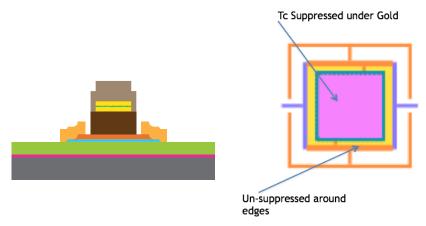
The two fluid model predicts that α is inversely proportional to I/I_{C} . Increasing G means increasing the bias current, which in turn suppresses α . We are exploring devices with higher resistances and fewer bars to compensate for this effect.

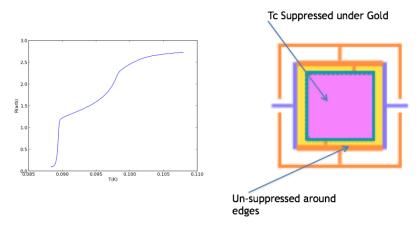
· Begin with TES with Bismuth absorber

· Begin with TES with Bismuth absorber

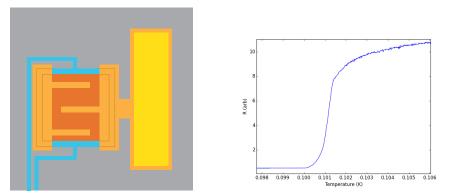


- Begin with TES with Bismuth absorber
- Ho ions implanted in gold above TES



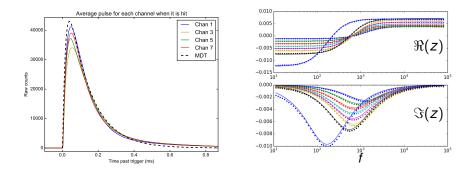


- Begin with TES with Bismuth absorber
- Ho ions implanted in gold above TES
- Capped off with extra Bismuth



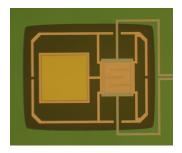
- Begin with TES with Bismuth absorber
- Ho ions implanted in gold above TES
- Capped off with extra Bismuth
- Gold suppresses T_C of area beneath.

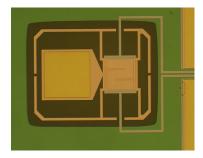
- · Begin with TES with Bismuth absorber
- Ho ions implanted in gold above TES
- Gold suppresses T_C of area beneath.
- Double T_C observed.


NEW scheme

"Sidecar" design

- Moves ion absorber pad to the side
- Thermal link is integrated copper structure
- Superconducting transition is restored
- Eliminates bismuth layer


Two-Body effects



Dark testing

- Impedance and noise suggest two body structure:
- $C_1 \approx 0.2 \text{ pJ/K}$ (TES), $C_2 \approx 0.5 \text{ pJ/K}$ (Absorber)
- and $G_2 \approx 70 \text{ nW/K}$
- · Born out by pulse shape

Two-Body effects II

Dark testing

- G₂ 4x lower than predicted by Wiedemann-Franz
- · And shows no variation between connection designs
- · Possibly connection between metal layers?
- However, $G_2 >> G$, so $G_2 \to \infty$ makes only marginal difference to noise, fall time
- New fabrication run to investigate regardless