High speed microwave rf-SQUID multiplexing read-out for neutrino mass experiment

A. Giachero^{1,2}, D. Becker³, D. A. Bennett³, M. Borghesi^{1,2}, M. De Gerone⁴, M. Faverzani^{1,2}, M. Fedkevych⁴, E. Ferri^{1,2}, J. W. Fowler³, G. Gallucci⁴, J. D. Gard³, F. Gatti^{5,4}, G. C. Hilton³, J. A. B. Mates³, A. Nucciotti^{1,2}, G. Pessina², C.D. Reintsema³, D. R. Schmidt³, D. S. Swetz³, J. N. Ullom³, L. R. Vale³

¹University of Milano-Bicocca, Milan, Italy ³NIST, Boulder, CO, USA ⁵University of Genova, Genova, Italy

²INFN of Milano-Bicocca, Milan, Italy ⁴INFN of Genova, Genova, Italy

19th International Workshop

on Low Temperature

Detectors (LTD)

July 19 - 29, 2021

Virtual Only Event

Overview

The baseline sensors for HOLMES are Mo/Cu TESs (Transition Edge Sensors) on SiN_x membrane with gold absorbers. Considering the large number of pixels and an event rate of about 300 Hz per pixel, a large multiplexing factor and a large bandwidth are needed. To fulfill this requirement, HOLMES will exploit recent advances on microwave multiplexing, techique that offers several gigahertz of readout bandwidth per pair of coaxial cables. In this contribution we present a fully scalable 32-channel readout system optimized to acquire high speed and high resolution TES detectors. This system is based on a ROACH2 board coupled to a remotely programmable semi-commercial up- and down-conversion circuitry, specifically designed for HOLMES.

B. Alpert et al. Eur. Phys. J. C75 (2015) 112

Ramp

	Required	Measured	Improved read out noise	\Rightarrow $n_{\rm S} = (23.3 \pm 2.4) \mathrm{pA}/\sqrt{\mathrm{Hz}}$	Resolution $\Rightarrow \Delta E_{\rm Mn} = 4.90 \pm 0.06 {\rm eV} @ 5.9 {\rm k}$
Resonators bandwidth $\Delta f_{\rm BW}$ [MHz]	2	2 ± 1			 not limited by the read out poise
Resonators spacing $\Delta f [MHz]$	14	14 ± 1	Previous work	\Rightarrow $n_{\rm S} = (26 \pm 7) \mathrm{pA}/\sqrt{\mathrm{Hz}}$	
Resonators depth $\Delta S [dB]$	> 10	29 ± 6		IEEE TAS 31 (2021) 5, 2100205	 compatible with previous works

Physics data from the first two 4×16 detector sub-arrays starting from the end of 2021 Read-out system for the 64 channels currently in development \Rightarrow

19th International Workshop on Low Temperature Detectors, 19 - 29, July 2021 - NIST, CO, USA

andrea.giachero@mib.infn.it