TES microcalorimeter detectors suitable for neutrino mass measurement

Andrea Giachero

University & INFN of Milano-Bicocca

Scientific case: measurement of the neutrino mass

- Electron capture from shell \geq M1 \Rightarrow ¹⁶³Ho + e⁻ \rightarrow ¹⁶³Dy* + $\nu_{e}(E_{c})$;
- End-point shaped by $\sqrt{(Q E_e)^2 m_{\nu}^2}$ (the same of the β -decay);

- by A. De Rujula e M. Lusignoli in 1982 Phys. Lett. 118B (1982) 429 Nucl. Phys. B219 (1983) 277-301
- Searching for a tiny deformation caused by a non-zero neutrino mass to the spectrum near its end point;
- · Calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
 - \Rightarrow measurement of the entire energy released except the ν energy;

more details on A. Nucciotti Adv. High En. Phys. 2016 (2016) 9153024 and M. Galeazzi et al. arXiv:1202.4763 [physics.ins-det]

proposed for the first time

The HOLMES experiment (ERC-2013-AdG no. 340321)

The statistical sensitivity $\Sigma(m_{\nu})$ has:

- Strong dependence on statistic: $\Sigma(m_
 u) \propto {N_{events}}^{1/4}$
- Strong dependence on rise time pile-up: $f_{PP} \simeq A_{EC} \cdot \tau_{res}$ Pulse pile-up occurs when multiple events arrive within the temporal resolving time of the detector (i.e. $E_1 + E_2 = Q_{EC}$);

(A_{EC}: pixel activity, $\tau_{\rm res}$: time resolution)

• Weak dependence on energy resolution ΔE ;

Large arrays of fast detectors are a fundamental requirements

HOLMES target

- Microcalorimeters base on Transition Edge Sensors with ¹⁶³Ho implanted Au absorber;
- Pixel activity of $A_{EC} \sim$ 300 Bq/det;
- Energy resolution: O(eV)
- Time resolution: $au_{
 m res}\sim$ 3 $\mu{
 m s}$ ($au_{
 m rise}=$ 10 20 $\mu{
 m s}$);
- 1000 channels for $3 \cdot 10^{13}$ events collected in $T_M = 3$ years;
- Expected Sensitivity: $m_
 u \leq 2\,{
 m eV}$

more details on Phys. J. C (2015) 75: 112

FUCAS2019

HOLMES: TES-based microcalorimeters

Microcalorimeters

The X-ray microcalorimeter works by sensing the heat generated by X-ray photons when they are absorbed and thermalized in a very low heat capacity element.

- · Absorber:
 - Very low thermal capacity (small size, *T* < 100 mK);
 - High stopping power (high Z material).
- Sensor:
 - Si or Ge Thermistors, TES, MMC, ...

Andrea Giachero

Transition Edge Sensor (TES)

- Exploits strongly temperature-dependent resistance of the superconducting phase transition;
- Low resistance: read out with SQUIDs (Superconducting Quantum Interference Devices);
- Small size, low thermal capacity, excellent energy resolution $\Delta E \simeq 1 \, \text{eV} @ 1.5 \, \text{keV} \text{:}$
- Large array and multiplexing (TDM, CDM , FDM and μwave) (more details on the Joel Ullom presentation);

Glasgow, September 3, 2019 3 / 17

EUCAS2019

HOLMES: The need for speed

<presentation:0>

Worst background: 2 x-ray events analyzed as 1 with a total energy around $Q_{EC} \Rightarrow$ pile-up events

The ¹⁶³Ho pile-up events spectrum is quite complex and presents a number of peaks right at the end-point of the decay spectrum;

 $S(E_c) = \left[N_{\text{ev}}(N_{\text{EC}}(E_c, m_{\nu}) + f_{\text{pp}} \times N_{\text{EC}}(E_c, 0) \otimes N_{\text{EC}}(E_c, 0)) + B(E_c)\right] \otimes R_{\Delta E}(E_c)$

A _{EC}	: decay activity
$=$ A _{EC} $ imes$ $ au_r$: pile-up rate
$S(E_c)$: total theoretical spectrum
$N_{\rm EC}(E_c,m_ u)$: ¹⁶³ Ho spectrum
B(E)	: background energy spectrum
	, data atau an annu una an anna funatia

 $R_{\Delta E}(E_c)_{\text{more}}$ detector energy, response function

• Pulse pile-up occurs when multiple events arrive within the temporal resolving time of the detector (i.e. $E_1 + E_2 = Q_{EC}$);

 f_{pp}

- Unresolved pile-up at the end-point Q_{EC} produces a sort of background close to the end-point;
- To resolve pile-up:
 - Detector with high time resolution τ_r (and fast signal rise-time τ_{rise});
 - · Efficient pulse pile-up recovery algorithm (Wiener filter, Singular Value Decomposition)
- The classical multiplexing schemas (TDM, CDM and FDM) provides a limited multiplexing factor (<40) and limited bandwidth (few MHz) on single detector ⇒ new approach: microwave multiplexing

- Sensor: TES Mo/Au bilayers, critical temperature $T_c = 100$ mK;
- Absorber: Gold, 2 $\mu \rm m$ thick for full e/ γ absorption;
- Side-car design to avoid TES proximitation;
- Thermal conductance G engineering for $\tau_{\rm decay}$ control;
- + 4 \times 16 linear sub-array designed for high implant efficiency;
- Optimized design for high speed and high resolution:

@3 keV : $\Delta E_{FWHM} \simeq$ 3 - 4 eV , $au_{
m rise} \simeq$ 10 μ s , $au_{
m decay} \simeq$ 100 μ s

¹⁶³Ho isotopes embedded in metallic absorbers (through ion-implantation)

- Fabrication in two steps:
 - NIST: Au absorber bottom-part placed side-by-side with the Mo/Cu sensor on a silicon nitride;
 - INFN: Au absorber finalized into the implanter deposition chamber during the ¹⁶³Ho implanting procedure;
- SiN membrane release by Silicon Deep Reactive Ion Etching (DRIE) or Silicon KOH anisotropic wet etching ⇒ tests currently in progress;
- + 2 $\mu\mathrm{m}$ thick Au encapsulating implanted Ho;

Microwave rf-SQUID multiplexing

- dc-biased TES inductively coupled to a dissipationless rf-SQUID;
- rf-SQUID inductively coupled to a high-Q superconducting $\lambda/4$ resonator;
- Change in TES current \Rightarrow change in the input flux to the SQUID;
- Change in the input flux to the SQUID \Rightarrow change of resonance frequency and phase;
- Each micro-resonator can be continuously monitored by a probe tone;

Microwave rf-SQUID multiplexing (cont.)

- By coupling many resonators to a single microwave feedline it is possible to perform the readout of multiple detectors
- Sensors are monitored by a set of sinusoidal probe tones (frequency comb);
- At equilibrium, the resonator frequencies are matched to the probe tone frequencies, and so each resonator acts as a short to ground;
- The ramp induces a controlled flux variation in the rf-SQUID, which is crucial for linearizing the response;
- Large multiplexing factor (> 100) and bandwidth, currently limited by the digitizer bandwidth.

The Multiplexing chip

The core of the microwave multiplexing is the multiplexer chip

- Superconducting 33 quarter-wave coplanar waveguide (CPW) microwave resonators;
- 200 nm thick Nb film deposited on high-resistivity silicon (ho > 10 k $\Omega \cdot$ cm);
- Each resonator has a trombone-like shape with slightly different length;
- The SQUID loop is a second order gradiometer consisting of four parallel lobes;
- Wiring in series different 33-channel chips with different frequency band allows to increase the multiplexing factor (daisy chain)

Andrea Giachero

Microwave readout hardware implementation

- A key enabling technology for large-scale microwave multiplexing is the digital approach;
- · This allows to exploit standard software-defined radio (SDR) used in microwave-frequency communication.
- Open architecture computing hardware ROACH2 (Reconfigurable Open Architecture Computing Hardware) as FPGA processing board;

Andrea Giachero

EUCAS2019

- Sensor: TES Mo/Au bilayers, critical temperature $T_c = 100$ mK;
- Absorber: Gold, 2 μ m thick for full e $^-/\gamma$ absorption (sidecar design);
- + First 4 imes 6 array prototype produced at NIST and tested in Milano with μ wave-readout;
- Different Perimeter/Absorber configurations in order to study the detector response;

HOLMES: the multiplexer chips (μ mux17a)

		Required	Measured
Resonators bandwidth	$\Delta f_{\rm BW}$ [MHz]	2	2 ± 1
Resonators spacing	Δf [MHz]	14	14 ± 1
Resonators depth	$\Delta S [dB]$	> 10	29 ± 6

All the microresonator parameters match the HOLMES specification

HOLMES multiplexing readout: current status

- ROACH2 board for tones generation/acquisition and for digital processing;
- Custom intermediate frequency (IF) circuitry for up/down conversion;
- + Working with: $n_{\Phi_0}=$ 2, $f_{\rm ramp}=$ 500 kHz, $f_{\rm ADC}=$ 512, MHz
- 16-channel firmware from NIST (uses only half of available ADC bandwidth);
- 4 pixels measurements ⇒ limited by available tone power;

HOLMES: detectors characterization with a fluorescence source

EUCAS2019

more details on

HOLMES

- Tests on four different detector designs;
- Calibration run performed with a primary ⁵⁵Fe source faced to different target

· Detectors characterization on non implanted detectors;

• x-ray fluorescence emission lines:

⁵⁵Mn (5.9 keV) ⁴⁰Ca (3.7 keV) ⁴⁰Cl (2.6 keV) ²⁷Al (1.5 keV)

Andrea Giachero

4 detector satisfied the HOLMES requirements \Rightarrow For the best detector: $\Delta E_{Mn} = 4.5 \pm 0.3 \text{ eV}$ @ 2.6 keV

TES #	∆E _{AI} [eV] (1486 eV)	∆E _{CI} [eV] (2622 eV)	∆E _{Ca} [eV] (3691eV)	∆E _{Mn} [eV] (5899 eV)	$ au_{rise} \left[\mu s \right]$ (2622 eV)	$ au_{short} \left[\mu s ight]$ (2622 eV)	$ au_{long} \left[\mu s \right]$ (2622 eV)
2 (b)	$\textbf{8.6}\pm\textbf{0.3}$	$\textbf{8.8}\pm\textbf{0.7}$	$\textbf{7.8} \pm \textbf{0.2}$	$\textbf{8.3}\pm\textbf{0.3}$	11	56	220
6 (d)	6 ± 1	$\textbf{6.0} \pm \textbf{0.4}$	$\textbf{6.4} \pm \textbf{0.4}$	$\textbf{6.2}\pm\textbf{0.4}$	12	34	170
8 (a)	$\textbf{4.5} \pm \textbf{0.3}$	5.0 ± 0.5	5.0 ± 0.2	4.5 ± 0.1	13	54	220
11 (c)	$\textbf{4.3}\pm\textbf{0.3}$	$\textbf{4.5}\pm\textbf{0.3}$	$\textbf{4.6} \pm \textbf{0.3}$		14	32	180

$$\mu_{
m s} = (2-3)\,\mu\Phi_0/\sqrt{
m Hz}$$
 $\sim (23-35)\,
m pA/\sqrt{
m Hz}$

Version designed to release the membrane with DRIE

- 2nd detectors generation in production at NIST
 - + 4 \times 16 linear sub-array designed for high implant efficiency;
 - · First production with sensor/absorber with few differences for determining the better pixel baseline;
 - Second production with pixel baseline implemented and with ¹⁶³Ho-implanted absorber;
- 4 multiplexer chips with different bandwidht produced at NIST and ready to be send in Milano;
- 64-channel read out and multiplexing system development started in 2019;
 - Based on the 2 ROACH2 systems ($f_{\rm ADC}=512$ MHz)
 - · Semicommercial up/down converter system able to drive 32 microresonator/board
- ¹⁶³Ho implanted activity optimized before the end of 2019
 - first high ¹⁶³Ho activity array running in 2020
 - + 1 month of 2 (4 imes 16)-sub array data taking can provide a statistical sensitivity $m_{
 u} \leq$ 10 eV

- The measurement of the end point of nuclear beta or electron capture (EC) decays spectra is the only model-independent;
- The goal of the next future experiments is the sub-eV neutrino mass sensitivity;
- TES x-ray microcalorimeters have already demonstrated high resolution and fast response ⇒ large array of these detectors are suitable for the direct measurement of neutrino mass;
- The HOLMES experiment will performe a direct measurment of the neutrino mass by using microcalorimenters with absorber ¹⁶³Ho-implanted
 - + 100 MBq of $^{\rm 163}{\rm Ho}\ {\rm produced} \Rightarrow {\rm enough}\ {\rm for}\ {\rm R\&D}\ {\rm and}\ {\rm 512}\ {\rm pixels};$
 - First ¹⁶³Ho implanting in array absorber running in 2020;
 - 64-channel read out and multiplexing system ready at the end of 2019;
- First physics measurement from the first two sub-array foreseen from 2020;
- Final 1024-pixel configuration will follow;