

Neutrino mass measurement with Ho

Elena Ferri

University of Milano-Bicocca and INFN of Milano-Bicocca on behalf of HOLMES collaboration

HOLMES collaboration: INFN Ge, INFN Mib, INFN LNGS, Unimib, NIST, Lisbona, PSI, ILL

July 4, 2014

Outline

- ¹⁶³Ho Electron capture and Neutrino mass measurement
- Neutrino mass Experiment with ¹⁶³Ho
 - ECHo
 - HOLMES
 - LALN
- Conclusion

Direct neutrino mass measurements

Kinematics of weak decays

- nuclear decay involving neutrinos
- only energy and momentum conservation
- no further assumptions

General experiment requirements:

- high statistics at the beta spectrum end-point
 - low E₀ β decaying isotopes: ¹⁸⁷Re, ¹⁶³Ho
- high energy resolution ΔE

Calorimeters: source \subseteq detector:

- the $\boldsymbol{\beta}$ source is embedded in the detector
- ideally they measure all the energy E released in the decay except for the ν_e energy
- calorimeters measure the entire spectrum at once

The electron capture of the ¹⁶³Ho

An interesting isotope suitable for the neutrino mass experiment could be the ¹⁶³Ho.

 $^{163}\text{Ho} + e^- \rightarrow \ ^{163}\text{Dy}^* + \nu_e(\text{E}_c) \quad \text{electron capture from shell} > M1$

- Series of lines at the ionization energies Ei of the captured electrons
- The peaks have Breit-Wigner shapes (width Γ_i of a few eV)
- End-point shaped by $\sqrt{(Q E_e)^2 m_v^2}$ (the same of the β -decay)
- Self calibrating spectrum

Elena Ferri

Calorimetric measurement of EC spectrum

- Calorimetric measurement of Dy atomic de-excitations (mostly non-radiative): \Rightarrow measurement of the entire energy released except the v energy
- The rate at end-point may be as high as for 187 Re but depends on Q_{FC} :
- Q_{EC} and atomic de-excitation spectrum poorly known:
 - \Rightarrow Measured: $Q_{EC} = (2.2 \div 2.8) \text{ keV}$
 - \Rightarrow Recommended: $Q_{EC} = 2.555 \text{ keV} [3, 4]$)
- $\tau_{1/2} \simeq 4570$ years \Rightarrow high specific activity:

 - \Rightarrow Holmium detector not needed \Rightarrow ¹⁶³Ho can be implanted in any suitable microcalorimeter absorber
- Complex pile-up spectrum
- No high statistics and clean calorimetric measurement so far

¹⁶³Ho: pile-up spectra

$$\begin{split} S(E_c) &= & \left[N_{ev}(N_{EC}(E_c,m_v) + f_{pp} \times \\ & N_{EC}(E_c,0) \otimes N_{EC}(E_c,0)) + \\ & B(E_c) \right] \otimes R_{\Delta E}(E_c) \end{split}$$

Nev	: total number of events
$C(E_c, m_v)$: ¹⁶³ Ho spectrum
B(E)	: background energy spectrum
$R_{\Delta E}(E_c)$: detector energy response function
fpp	: fraction of pile-up events
$R_{\Delta E}(E_c)$: detector energy response function
ΔE	intervall of energy

more details in A. Nucciotti, submitted to EPJC, arXiv:1405.5060 [5]

- Pulse pile-up occurs when multiple events arrive within the temporal resolving time of the detector
- Unresolved pile-up produces background close to the end-point
- The ¹⁶³Ho pile-up events spectrum is quite complex and presents a number of peaks right at the end-point of the decay spectrum
- To resolve pile-up:
 - Detector with fast signal rise-time $\tau_{\texttt{rise}}$
 - Pile-up recognition algorithm

¹⁶³Ho: statistical sensitivity

Montecarlo Simulation

- The approach is a replica of the one outlined in [6] for beta decay calorimetric experiments:
 - large number of simulated spectra that would be measured by a large number of experiments carried out in a given configuration
 - the spectra are analyzed as the real ones
 - the statistical is sensitivity deduced from the distribution of the obtained m_{γ}^2

Requirements:

- High energy resolution ($\simeq 1 \text{ eV}$)
- Fast response detectors ($\simeq 1 \ \mu s$) to avoid pile-up events
- Multiplexable detectors array ($\simeq 1000$)

↓ TESs, MMCs, MKIDs, ...

Holmium LTD experiment status

¹⁶³Ho seems to be better than ¹⁸⁷Re:

- higher specific activity \Rightarrow Holmium detector not needed
- self calibrating \Rightarrow better systematics control
- $Q_{E\,C}$ and atomic de-excitation spectrum poorly known
- complex pile-up spectrum
- in case of higher $Q \Rightarrow$ less sensitive

LTD projects with ¹⁶³Ho:

- ECHo, MMC detectors (Heidelberg)
- HOLMES, TES detectors (Milano, Genova, LNGS, NIST)
- Los Alamos Nat. Lab., ...

Common technical challenges:

- Clean ¹⁶³Ho production
- ¹⁶³Ho incorporation
- Large channel number \Rightarrow high speed MUX
- Data handling (processing, storage, ...)

ECHo

First detector prototype

- low temperature metallic magnetic calorimeters
- embedding of 163Ho source
 ⇒ ion implantation @ ISOLDE-CERN
- about 0.01 Bq per pixel
- two pixels have been simultaneusly measured

Calorimetric spectrum

- rise time $\approx 130 \text{ ns}$
- $\Delta E_{FWHM} = 7.6 \text{eV} @6 \text{ keV}$
- non-linearity <1% @ 6 KeV
- presentely most precise 163Ho spectrum

	E _H lit.	$E_{H}exp$	$\Gamma_{\rm H} { m lit}$	$\Gamma_H exp$
MI	2.047	2.040	13.2	13.7
MII	1.845	1.836	6.0	7.2
NI	0.420	0.411	5.4	5.3
NII	0.340	0.333	5.3	8.0
OI	0.050	0.048	5.0	4.3

P.C.O Ranitzsch et al [8] L. Gastaldo et al [9]

ECHo:¹⁶³Ho production and purification

163 Ho source - (n, γ) - reaction on 162 Er

- June 2012 : one irradiation at BER II Research Rector Berlin
- Summer 2013: Two irradiations at ILL
 - treatment of Er prior to irradiation: all elements lighter than Er separated
 - treatment of Er after irradiation: all elements heavier than Ho are separated

¹⁶³Ho source purification

- Radionuclides contained in the samples:163 Ho and 166 m Ho
- Mass separation/ion implantation
 - Separation at CERN/ISOLDE: Proposal accepted, will run in 2014
 - Use of the RISIKO mass-separator at Uni-Mainz, Summer 2014

ECHo:next step

Next step

- Microvawe multiplexing technique
- 2 chips $\rightarrow 64 \mbox{ pixels}$
- ΔE_{FWHM} =5eV, 10 Bq/pixel
- statistical sensitivity as low as 10 eV
- prove scalability

July 4, 2014

10/20

HOLMES (ERC-Advanced Grant n. 340321)

Goal

- Neutrino mass measurement:
 - $\Rightarrow \ m_{\nu} \ statistical \ sensitivity \ as \ low \ as \ 0.4 \ eV$
- Demonstrate technique potential and its scalability (Megapixel experiment)
- assess EC Q-value
- assess systematic errors

Baseline

- Transition Edge Sensors (TES) with ¹⁶³Ho implanted Bi:Au absorbers
- $6.5 \cdot 10^{13}$ nuclei per detector $\Rightarrow 300$ dec/s
- $\Delta E \simeq 1 \, eV$ and $\tau_{\texttt{rise}} \simeq 1 \, \mu s$
- 16 channel demonstrator data taking starting from the second half of 2016
- 1000 channel final array from second half of 2017
 - $6.5 \cdot 10^{16} \, {}^{163}$ Ho nuclei $\Rightarrow 18 \, \mu g$
 - $3 \cdot 10^{13}$ events in 3 years

HOLMES tasks

- ¹⁶³Ho isotope production and ¹⁶³Ho isotope embedding in detector
- Single TES optimization and testing
- TES array design, engineering and testing
- SQUID read-out and multiplexing optimization and testing (rf-SQUID)
- Real time and offline signal processing and analysis (trigger, OF filter, pile-up rejection)

ICHEP 2014

HOLMES Sensitivity

Elena Ferri

July 4, 2014 12 / 20

¹⁶³Ho production and embedding

Production of ¹⁶³Ho: neutron activation of enriched ¹⁶²Er

$$^{162}\text{Er}(n,\gamma)^{163}\text{Er}$$
 \rightarrow $^{163}\text{Ho}+\nu_e$, $\sigma_{therm}=20b$, $\tau_{EC}^{1/2}=75\,\text{min}$

- requires $^{162}\,\text{E}\,\text{r}$ enrichment and oxide chemical form (Er_2O_3)
- high yield (not all cross sections are measured)
- unavoidable 166m Ho: 165 Ho (n, γ) 166m Ho (β , $_{12}=1200$ y) from Ho contaminations or 164 Er(n, γ) 165 Er
- unavoidable $^{164}\text{Ho:}$ fast neutron activation $^{163}\text{Ho}(n,\gamma)^{164}\text{Ho}$
- nuclear reactor at the Institut Laue Langevin (ILL) in Grenoble

Thermoreduction to obtain the metallic Ho target for implantation:

HOLMES detectors

Transition Edge Sensor (TES): cryogenic particle detector that exploits the strongly temperature-dependent resistance of the superconducting phase transition.

Why TES?

- Widely used by the X-ray astrophysics community over the past twenty years
- Excellent energy resolution:

$$\Delta E_{FWHM} = \begin{cases} 1.26 eV @ 1.5 keV \\ 1.58 eV @ 6 keV \\ 1.94 eV @ 8 keV \end{cases}$$

- Low impedence
- Large Array and multiplexing (TDM, CDM, FDM, $\mu\text{mux})$
- Tunable critical temperature T_C exploiting the proximity effect [10] \Rightarrow Mo:Au or Mo:Cu proximity TES ($T_C \simeq 100$ mK)

TES production

Transition Edge Sensor (TES): MoCu bilayers \rightarrow T_c \approx 100mK

- microcalorimeters with electro-thermal feedback
- 3 μ m thick Bi absorber with 163Ho/Au encapsulating for full absorbtion
- source: thin electrodeposited Au encapsulating implanted ¹⁶³Ho
- TES fabricated by subcontractor (NIST, Boulder, CO, USA)
- ¹⁶³Ho implantation and Si₂N₃ membrane release at Genova

rf-SQUID read-out and ROACH2

Microwave SQUID multiplexing (μ Mux) is a read-out technique that combines the proven sensitivity of TESs and the scalable multiplexing power found in KIDs. It uses radio-frequency rf-SQUIDs coupled to high quality-factor microwave resonators.

rf-SQUID read-out

- DC biased TES
- SQUID coupled with TES and a resonator circuit
- Microwave rf-SQUID read out with flux ramp modulation (common flux line is inductively coupled to all the SQUIDs)
- Signal reconstructed by homodyne detection and demodulation

ROACH2-based Software Defined Radio

- Xilinx FPGA based digital data processing
- frequency comb generation (up to ≈ 60 in 0-550 MHz)
- GHz band up/down conversion (5-5.5 GHz)
- homodyne detection: IQ signal de-multiplexing
- signal channelizing and rf-SQUID signal de-modulation
- real time signal processing $\rightarrow 140 TB$ in 3 years

ADC/DAC

Board

IF Board

ICHEP 2014

ROACH2

LANL

¹⁶³Ho source

- Proton irradiation of natural Dy at high-current LANL proton accelerator
- Separation of \approx 500 µg di Ho from 110 mg di Dy J.W. Engle *et al.* [11]

Detector

- Transition Edge Sensor: MoCu superconducting films on solid silicon

- Feasibility demonstrated with embedding ⁵⁵Fe source
- Recent measurements show $\Delta E\approx 7.5$ eV FWHM
- Testing several methods of incorporating Ho into absorbers

from L. Gastaldo - talk at Neutrino2014 Conference

Conclusion

- The measurement of the end point of nuclear beta or electron capture (EC) decays spectra is the only model-independent
- The goal of the next generation experiments is the sub-eV neutrino mass sensitivity
- ECHo has acquired the most precise ¹⁶³Ho spectrum so far
- The ECHo next step is to achieve a sensitivity on neutrino mass of the order of 10 eV
- The HOLMES experiment will performe a direct measurement of the neutrino mass by using microcalorimenter with ¹⁶³Ho-implanted absorber.
- The Goals of the HOLMES experiment are:
 - assess EC Q-value of the ¹⁶³Ho
 - assess systematic errors
 - achieve a statistical sensitivity as low as 0.4 eV
 - prove technique potential and its scalability (Megapixel experiment)

References

- A. De Rujula and M. Lusignoli Physics Letters B, vol. 118, pp. 429–434, 1982, doi:10.1016/0370-2693(82)90218-0.
- [2] A. de Rujula and M. Lusignoli Nuclear Physics B, vol. 219, pp. 277 301, 1983, doi:10.1016/0550-3213(83)90642-9.
- [3] C.W. Reich and Balraj Singh Nuclear Data Sheets, vol. 111, pp. 1211 1469, 2010, doi:10.1016/j.nds.2010.04.001.
- G. Audi, A.H. Wapstra and C. Thibault Nuclear Physics A, vol. 729, pp. 337 676, 2003, doi:j.nuclphysa.2003.11.003.
 The 2003 NUBASE and Atomic Mass Evaluations.
- [5] A. Nucciotti 2014, e-print: arXiv:1405.5060 [physics.ins-det].
- [6] A. Nucciotti, E. Ferri and O. Cremonesi Astropart.Phys., vol. 34, pp. 80–89, 2010, doi:10.1016/j.astropartphys.2010.05.004, e-print: arXiv:0912.4638 [hep-ph].
- [7] L. Gastaldo et al. Journal of Low Temperature Physics, 2014, doi:10.1007/s10909-014-1187-4.
- [8] P.C.O. Ranitzsch et al. Journal of Low Temperature Physics, vol. 167, p. 10004, 2012.
- [9] L. Gastaldo et al. Nuclear Inst. Meth., vol. 711, pp. 150–159, 2013.

- [10] Hans Meissner Physical Review, vol. 117, pp. 672–680, February 1960, doi:10.1103/PhysRev.117.672.
- [11] **J.W Engle et al.** *NIM B*, vol. 311, pp. 131–138, 2013.