Probing the absolute neutrino mass scale with ¹⁶³Ho: the **HOLMES** project

M. De Gerone

INFN Genova on behalf of the HOLMES collaboration

TAUP 2017 XV International Conference on Topics in Astroparticle and Underground Physics

Sudbury, 24 - 28 July 2017

¹⁶³Ho electron capture

$$163\text{HO} + \text{e}^{-} \rightarrow \text{Dy}^{*} + \text{V}_{\text{e}} \quad \frac{d\lambda_{EC}}{dE_{c}} = \frac{G_{\beta}^{2}}{4\pi^{2}} \left(Q - E_{c}\right) \sqrt{\left(Q - E_{c}\right)^{2} - m_{\nu}^{2}} \times \sum n_{i}C_{i}\beta_{i}^{2}B_{i}\frac{\Gamma_{i}}{2\pi}\frac{1}{(E_{c} - E_{i})^{2} + \Gamma_{i}^{2}/4}$$

Q~2.8keV, capture only from shell \geq M1 De Rujula & Lusignoli, Phys. Lett. B 118 (1982) 429

 $\begin{array}{l} \text{same factor as } \beta \text{ decay} \\ \text{(total de-excitation energy } E_c \text{ instead of } E_e) \end{array}$

Breit-Wigner shapes

- calorimetric measurement of Dy* de-excitation
 "good" event rate and v mass sensitivity depends on Q-value and capture peak position (roughly ~1/(Q-E_{M1})³)
- $\tau_{1/2} \sim 4570$ years \rightarrow few active nuclei needed

¹⁶³Ho electron capture

Complex pile-up spectrum: end-point is dominated by $((Q-E_C)^2 - m_v^2)^{1/2}$ but expected distortions due to pile-up:

$$N_{pp}(E) = f_{pp} N_{EC}(E) \otimes N_{EC}(E)$$

Pile-up occurs when multiple events arrive within the resolving time of the detector. In a first approximation, fraction of unresolved pile up is given by $f_{pp} = \tau \times A_{EC}$.

In order to reduce pile-up:

- trade-off between activity and statistic;
- detector with fast signal rise time τ_r;
- pile-up resolving algorithm.

• Direct neutrino mass measurement with statistical sensitivity around 1 eV

- Usage of Transition Edge Sensor (TES) based micro-calorimeters with ¹⁶³Ho implanted Au absorber:
 - 6.5 x 10¹³ nuclei / det
 - $A_{EC} \sim 300 \text{ Bq} / \text{det}$
 - $\Delta E \sim 1 eV$, $\tau \sim 1 \mu s$
- 1000 channels array:
 - 6.5 x 10¹⁶ total nuclei
 - O(1013) events / year
- Should prove the technique potential and scalability by:
 - assessing EC spectral shape
 - assessing systematic errors

¹⁶³Ho production

¹⁶³Ho does not exist in nature: it is produced from ¹⁶²Er neutron activation at nuclear reactor:

- ¹⁶²Er (n,γ) ¹⁶³Er, σ_{therm} ~ 20 b
- ${}^{163}\text{Er} + e^- \rightarrow {}^{163}\text{Ho} + v_e (\tau_{1/2} \sim 75 \text{ m})$
- high yield
 - •~3x10¹² ¹⁶³Ho nuclei/mg¹⁶²Er/h
- requires ¹⁶²Er enrichment and oxide chemical form (Er₂O₃)

But contaminations from other isotopic species. Main one:

- ¹⁶⁵Ho (n,γ) ^{166m}Ho (β, τ_{1/2}~ 1200 years)
- from Ho contamination or ^{164}Er (n, $\gamma)$
- need high purification of sample:
 - radiochemical separation
 - mass separation with magnetic dipole

¹⁶³Ho purification

- Enriched Er₂O₃ samples irradiated at ILL (Grenoble) and post-processed at PSI
 - 25mg, 55 days irradiation \rightarrow A(¹⁶³Ho) ~ 5 MBq
 - 150mg, 50 days irradiation → A(¹⁶³Ho) ~ 38 MBq
- Ho radiochemical separation is performed via ion-exchange resins in hot-cell at PSI
 - efficiency > 80% (provisional estimation)
- 540mg irradiated for 50 days at ILL in early 2017 are ready for purification
- expected overall activity: ~130 MBq (enough for R&D and half pixels)

¹⁶³Ho mass separation and implantation

163

4mm FWHM

at the slits

• Implanter machine with 30/50 kV acceleration (10-50nm implantation depth) and magnetic dipole:

0.8

0.6

0.4

0.2

- ¹⁶³Ho/^{166m}Ho separation better than 10⁵
- first components delivered in Genova at beg. 2017, now under test (magnet, source, vacuum OK full system test coming soon)
- upgrade with focusing triplet and magnetic xy scanning expected for late 2017 / beg. 2018

162

Detector design and test

- TES design, production and preliminary test is done @NIST
- 2 µm gold thickness for full absorption of electrons and photons
- "side car" configuration to avoid TES proximization and allow G engineering for τ control
- Design optimized to obtain best compromise between resolution and time response. Target (@3keV):
 - ΔE_{FWHM} ~ 1eV
 - τ_{rise} ~ 1 μs
 - τ_{decay} ~ 100 μs
- RF-SQUID readout with microwave MUX

- $\tau_{rise} \sim 3 \mu s$
- τ_{decay} ~ 130μs

Detector fabrication

Detector fabrication is done with a **multi-step procedure**:

- 1) TES array is produced @NIST
- 2) 163Ho is implanted @Genova
- 3) 1 µm Au final layer is deposited over Ho implantation ("complete" the absorber)

4) final fabrication processes definition is on-going

4 x 16 linear array for implantation optimisation

M. De Gerone, TAUP 2017

Pixel testing with HOLMES DAQ

Pixel testing with HOLMES DAQ

M. De Gerone, TAUP 2017

Current status and schedule

Project Year	2015	20	16	20	17	20	18
Task	S2	S1	S2	S1	S2	S1	S2
Isotope production							
TES pixel design and optimization							
Ion implanter set-up and optimization							
Full implanted TES pixel fabrication							
ROACH2 DAQ (HW, FW, SW)							
32 pix array 6mo measurement							
Full TES array fabrication							
HOLMES measurement							

HOLMES project status:

- TES array and DAQ ready
- Ion implanter setting up is in progress
- First ¹⁶³Ho implantation coming shortly
- Spectrum measurements will begin late in 2017
- 32 pixels for 1 month $\rightarrow m_v$ sensitivity ~10 eV

Back up slides

The **HOLMES** collaboration

ERC Advanced Grant 2013 Research proposal [Part B1]

INFN

Istituto Nazionale

di Fisica Nucleare

INFN Genova

Principal Investigator (PI): Prof. Stefano Ragazzi PI's Host Institution for the project: Istituto Nazionale di Fisica Nucleare

The Electron Capture Decay of ¹⁶³Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity

HOLMES

Uni Milano Bicocca	NIST	DOI	A.Bevilacqua M.Biasotti
INFN Milano Bicocca	B.Alpert	P51	V.Ceriale M De Gerone
G.Ceruti M.Faverzani E.Ferri A.Giachero	D.Becker D.Bennett J.Fowler J.Gard J.Havs-Wehle	R.Dressler S.Heinitz D.Schumann CENTRA-IST	G.Gallucci F.Gatti L.Parodi F.Siccardi
A.Nucciotti A.Orlando G.Pessina	G.Hilton J.Mates	M.Ribeiro-Gomes	INFN Roma
A.Puiu S.Ragazzi	C.Reintsema D.Schmidt	ILL	M.Lusignoli
M De Gerone TAUP 2017	D.Swetz J.Ullom L.Vale	U.Koester	
			S.IVISI

Direct v mass measurement

Kinematics of weak decay with v emission:

- low Q nuclear β decays (³H, ¹⁸⁷Re, ¹⁶³Ho...)
- model independent: only E, p conservation
- v mass appears as a distortion in the Kurie plot

2 different approaches:

- **spectrometry**: source placed outside the detector (KATRIN approach)
- calorimetry: source embedded inside the detector (ECHO, MARE, HOLMES approach) ⇒ low T μ-calorimeters

Spectrometry vs calorimetry

General requirements for a ν mass experiment:

- High statistics near the end point
 - low Q-value (stat $\sim I/Q^3$)
 - high activity/efficiency of the source
- Energy reso order ~eV or below (comparable with m_{ν})
- S/N ratio
- small systematic effects

Spectroscopy: source ∉ detector

- high statistics
- high energy resolution (below eV)
- systematics due to the source (energy loss)
- systematics due to decay to excited states
- background

Calorimetry: source ⊂ detector

- no backscattering
- no energy loss in source
- no solid state excitation
- no atomic/molecular final state effects
- good energy resolution (~eV)
- limited statistics
- systematics due to pile-up
- background

Low T calorimetry in a nutshell

- Complete energy thermalization (ionization, excitation \rightarrow heat \rightarrow calorimetry)
- $\Delta T_{max} = E/C, C$ is the total thermal capacity
 - absorber with low thermal capacity
 - for superconductors below T_C and dielectric: $C \sim (T/\theta_D)^3$ (Debye law)
 - very low T is needed (10÷100mK)
- $\Delta E_{rms} = (k_b T^2 C)^{1/2}$ due to statistical fluctuations of internal energy
- $\Delta T(t) = E/C e^{-t/\tau}$, $\tau = C/G$ and G is the thermal conductance

Ho production and purification

¹⁶³Ho separation from Dy, Er and others...

- radiochemistry (before/after activation process)
- magnetic mass separation

 Ho_2O_3 thermoreduction in Knudsen cell provides a metallic sample for the implantation:

- $Ho_2O_3 + Y(met) \rightarrow Ho(met) + Y_2O_3 @2000K$
- First test already performed in Genova

Array readout: rf-SQUID µwave mix

To linearize the SQUID response, a voltage ramp is constantly applied to every SQUID trough a common line.

The signal is reconstructed from the phase shift of the SQUID oscillation (solid line), with respect to a reference sine function (dotted line).

The ramp frequency is the effective pulse sampling

Each rf-SQUID is coupled to a GHz range resonator

- resonance bandwidth has to match the SQUID oscillation frequency i.e. 2 MHz
- resonance spacing has to be tuned to maximise multiplexing factor avoiding crosstalk

0.0

0

10

Time (ms)

i.e. 14 MHz

20

Source of background

- Environmental γ radiation
 - Compton interactions, photoeletric interactions with p.e. escape
 - Fluorescent X-rays and X-ray escape line
 - Cosmic rays
 - GEANT4 simulation for CR at sea level (only muons)
 - Au pixel 200 x 200 x 2 µm³ → bkg
 ~ 5 x10⁻⁵ c/eV/day/det (0 4 keV)

- Internal radionuclides
 - ^{166m}Ho (β ⁻, $\tau_{\frac{1}{2}}$ = 1200 y, produced along with ¹⁶³Ho)
 - Au pixel 200 x 200 x 2 μ m³ \rightarrow bkg ~ 0.5 c/eV/day/det/Bq(^{166m}Ho)
 - A(¹⁶³Ho) = 300Bq/det (~ 6.5×10¹³ nuclei/det)
 - if bkg(^{166m}Ho) < 0.1 c/eV/day/det
 - $\rightarrow A(^{163}Ho)/A(^{166m}Ho) > 1500$
 - $\rightarrow N(^{163}Ho)/N(^{166m}Ho) > 6000$

M. De Gerone, TAUP 2017

ROACH2-based multiplexing

- Reconfigurable Open Architecture Computing Hardware (ROACH) designed by the Collaboration For Astronomy Signal Processing and Electronics Research (CASPER);
- Xilinx Virtex FPGA based digital data processing;
- Frequency comb generation (≈ 60 tones in the 0 ÷ 550 MHz range);
- Quadrature frequency upmixing (500 MHz → 5 GHz) and down- mixing (5 GHz → 500 MHz);
- Signal channelizing and rf-SQUID signal de-modulation
- Real time signal processing;
- Strongly tested for MKIDs read- out (ARCONS, 2048 pixels)

Holmes design:

- 4 × 256 = 1024 pixels;
- Target: 64 resonace per ROACH-module;
- Complete system composed by 16 module.