Development of microwave superconducting microresonators for neutrino mass measurement in the HOLMES framework [Poster G1.20]

A. Giachero¹, P. Day², P. Falferi³, M. Faverzani¹, E. Ferri¹, C. Giordano⁴, R. Nizzolo¹, M. Maino¹, B. Marghesin⁴, R. Mezzena⁵, A. Nucciotti¹, A. Puiu¹, L. Zanetti¹

1 Università di Milano-Bicocca e INFN Milano-Bicocca, Italy

2 Jet Propulsion Laboratory, Pasadena, CA, U.S.A.

3 Istituto di Fotonica e Nanotecnologie, CNR-Fondazione Bruno Kessler, Trento, Italy

4 Fondazione Bruno Kessler, Trento, Italy

5 Dipartimento di Fisica, Università di Trento, Trento, Italy

16th International Workshop on Low Temperature Detectors July 20th – 24th 2015, Grenoble, France

The HOLMES Experiment

HOLMES is a new experiment to directly measure the neutrino mass with a sensitivity as low as 0.4 eV. HOLMES will perform a calorimetric measurement of the energy released in the electron capture (EC) decay of ¹⁶³Ho.

- The method consists in searching for a tiny deformation caused by a non-zero neutrino mass to the ¹⁶³Ho EC spectrum near its end point (Q_{EC});
- In order to reach the sensitivity of 0.4 eV HOLMES will deploy 1000 detectors of low temperature microcalorimeters with implanted ¹⁶³Ho nuclei in the absorber.
- The baseline sensors for HOLMES are Mo:Cu TESs (Transition Edge Sensors) on SiNx membrane with gold or bismuth absorbers.

Sensitivity below 0.1 eV

¹⁶³Ho decay experiments statistical sensitivity dependence on the total statistics N_{events}

- The HOLMES technologies are not readily scalable to Mega-pixel arrays needed for a high neutrino mass sensitivity measurement (m_v < 0.1 eV);
- An alternative solution is based on MKIDs detectors that have recently demonstrated the feasibility to build 100kpixel arrays with promising performances;

MKIDs for X-rays detection

In non-equilibrium mode (**athermal mode**) the excess quasiparticles $d\sigma/dn_{qp}$ is due to an external pair breaking.

X-ray detection by using a superconducting absorber and exploiting the quasiparticle trapping.

In thermal equilibrium mode (**thermal mode**) an identical increase of quasiparticle population can be generated by a temperature change (pure calorimeter)

Ti/TiN multilayer films

Superconducting films made by using multilayer composed by a superposition of bilayers of Titaniun and Titaniun Nitrate (Ti/TiN) → proximity effect

Devices Production and Characterizations

Two families: High T_c (1.5 K) to study the athermal mode (with Tantalum absorber); Low T_c (0.6 K) to study the thermal mode (with Gold absorber);

Ti	TiN	N layers	T _C
[nm]	[nm]		[K]
10	12	9	1.5
10	7	12	0.6

The variation of the resonant frequency as a function of the temperature is steeper with lower critical temperatures.

- Optimize the layout geometry in order to improve the detector performances (kinetic fraction for the high T_c, quality factor for the low T_c, etc, ...)
- Implement microresonators with absorber (Tantalum and Gold);
- Deep characterization with radioactive sources (⁵⁵Fe and ²⁴¹Am+Al foil sources);
- Development of a readout and multiplexing system based on the ROACH2 board;