

Noemi Cerboni :: PhD :: Paul Scherrer Institut

Preparation and Characterization of Holmium Sources for the HOLMES Experiment

Seminar, 12.05.2022

Goal: prepare sources for the measurement of the electron neutrino mass from the electron capture decay of ¹⁶³Ho

Ideal source

- 1. Chemically pure
- 2. Homogeneous distribution of Ho \Box slow and constant Ho release
- 3. Obtained with high yield

Molecular Plating

Molecular Plating (MP): deposition of Ho complexes in an organic solvent at high voltages

Investigation of influence of solvent's vapor pressure on morphology

Effect of Solvents on the Yields

Measured by $\gamma\text{-spectroscopy}$ with $^{\text{166m}}\text{Ho}$ as radiotracer

solvent	MP yield (%)	%) Bath losses (%)	
Acetone	79	0	
Isobutanol	98.1	0	
Isopropanol	99.9	14.8	
DMF	99.4	1.8	
DMAc 96.5		0	

Very high yields and good adherence to backing

Elemental Mapping via EDX

- Most likely deposition of Ho(OH)₃ and co-deposition of org. compounds
- Similar chemical composition for all solvents

Influence of Solvent on the Microstructure

The lower the vapour pressure the more stable the deposition (less cracks, less flaking) $_{Page 7}$

Large Cathode - Results

- Very high yields (> 99%)
- Homogeneous deposition
- Good microstructure (similar to small samples)
- no relevant current detected at 165
 u but at 182 u in mass separator might correspond to HoOH⁺
- Very low current
 sputtering of thin film at the same time

Drop-on-Demand Inkjet Printing

3D positioning system (automatic movement)

Dosage device (droplet deposition)

Deposition of droplets with identical volume (3-7 μ L)

Investigate different sources produced starting from different Ho salts

- Different drying mechanism for Ho(NO₃)₃ and HoCl₃ versus Ho(OAc)₃
- In our case, more uniform deposition (and hence higher surface density) with $Ho(OAc)_3$

Elemental Mapping via EDX

Indicate elemental composition of dried substances does not change upon drying (with unknown ratio)

Time-Resolved Infrared Spectroscopy

- In-situ monitor drying mechanism: start from IR spectrum of H₂O and finish with spectrum of dried product
- Here: scan every 2 min for 1h

Characterization: Infrared Spectroscopy

- Likely change in coordination geometry visible from change in peak intensity
- Still, dried product correspond to dissolved Ho salt

Characterization: X-Ray Diffraction

- No reflection signals in drops on substrate
 - Either deposit an amorphous material
 - or impossible detection of the actual drop

• Preferentially orientated crystallisation

• Other studies with high-intensity synchrotron radiation required (under evaluation)

Large Cathode - Results

190 droplets of 3.5 μ L each

Weak peak detected at 165 u but it significantly decreases over time \Box too fast sputtering

Coupled Reduction

Coupled Reduction (CR): Ho reduction and diffusion into backing material due to thermodynamically favourable formation of intermetallic compound

Study two different backing materials and different Ho concentrations

Yield of Molecular Plating

Pt			Pd		
0.25 wt%	0.25 wt%	0.5 wt%	1.25 wt%	2.5 wt%	5 wt%
99.4 %	99.6 %	99.2 %	99.2 %	92.8 %	84.9 %
					C

- Uniform surface distribution
 - 5 wt% Ho on Pd $_{\Box}$ deposited layer too thick to be stable
- Increase of thickness of deposited layer visible from color

Ho-Pt before and after CR

- Similar morphology as before CR 👝 no Ho diffusion
- After CR: very small O peak 👝 Ho reduction

Ho-Pd before and after CR

- Grain boundaries of Pd visible 🗖 Ho diffusion
- After CR: no Ho and O peak 👝 successfull Ho reduction and diffusion

Preparation of Ho/Pd intermetallic \Box to be measured

- MP
 - Very high yields
 - Deposition of Ho complexes \Box fast sputtering of HoOH⁺
- DoD:
 - Very high yields
 - Deposition of one Ho complex with labile bonds \Box fast sputtering of Ho^{x+}
- CR:
 - High yields
 - Formation of Ho^o into the bulk of the backing material constant sputtering of Ho

Wir schaffen Wissen – heute für morgen

My thanks go to

- Emilio
- Patrick
- Dorothea
- Rugard
- Robert
- Lu
- Ivan
- Mario
- Georg

.....

• Dominik

