HOLMES

Direct neutrino mass measurement with Transition Edge Sensors and Kinetic Inductance Microwave Detectors

The International Workshop on Prospects of Particle Physics: "Neutrino Physics and Astrophysics"

Neutrino mass

Already known

- Neutrinos have mass
- Interaction eigenstates $|v_1\rangle$ can be espressed

in term of mass eigenstates $|v_{\alpha}\rangle$

 $|\nu_l\rangle = \sum U_{\alpha l} |\nu_\alpha\rangle$

Mass measurements

			passous Inium source transport section passous Inium source transport section spectrometer
Method	Cosmology	0vββ decay	β spectrum endpoir
Observable	$m_{\Sigma} = \Sigma_i m_{\nu i}$	$m_{\beta\beta} = \left \Sigma_i m_{\nu i} U_{ei}^2 \right $	$m_{\beta} = \left(\Sigma_i m_{\nu_i}^2 U_{ei}^2\right)^{1/2}$
Status quo	~0.1 eV	~0.1 eV	2 eV
Next generation	0.01 eV	0.01 eV	0.2 eV
Systematics	large	good	large
Model	dependent	dependent	independent

attan

- m_y is strongly dependent on cosmological assumptions
- The evaluation of nuclear matrix elements involved in $0\nu\beta\beta$ decay is a major challenge (IMB, QRPA)
- Direct measurement of beta or Electron Capture (EC) spectrum is not model dependent → spectrometers: external β source

 \rightarrow calorimeters: β o EC embedded in the detector

Electron capture of ¹⁶³Ho

A promising isotope for a direct neutrino mass measurement is ¹⁶³Ho

 $^{163}\mathrm{Ho} + \mathrm{e}^{-}
ightarrow ^{163}\mathrm{Dy}^{*} +
u_{\mathrm{e}}$ Electron capture from shell > M1 $^{163}\mathrm{Dy}^*
ightarrow ^{163}\mathrm{Dy} + \mathrm{E_C}$ A D. Rujula and M. Lusignoli, Physics Letters B, vol. 118, 1982. 10^{12} N1 $Q_{EC} = 2.55 \text{ keV}$ $-m_{\rm w} = 0 \, {\rm ev}$ $Q_{EC} = 2.20 \text{ keV}$ 10^{11} $-m_{v} = 5 \text{ ev}$ N2 Counts/0.3 eV $m_{v} = 10 \text{ ev}$ M2 M1 10^{10} $Counts \cdot 10^4/0.$ 10^{9} 2 $Q_{EC} = 2.555 \text{ keV}$ 10^{8} $N_{ev} = 10^{14}$ $f_{pp} = 10^{-6}$ 1 10^{7} $\Delta E_{FWHM} = 2 \text{ eV}$ 10^{6} 2.5 0.5 1.5 2 1 0 2.53 2.54 2.55 2.56 Energy [keV] Energy [keV]

Event rate at the end point ${f O}\sqrt{({f Q}-{f E}_{f c})^2-m_
u^2}$

End point

The ability to measure m_v or to set a limit depends on the number of decays close to the end point, which is strongly dependent on the relative position of the Q-value with respect to the M1 resonance

★ Measured QEC (2.2 ÷ 2.8 keV) suggested 2.555 keV

★ $T_{1/2}$ =4750 y → good sensitivity with 6.5*10¹⁶ nuclei (300 decay/s per detector)

HOLMES (ERC-Advanced Grant n. 340321)

goal

- neutrino mass measurement: m_v statistical sensitivity as low as 0.4 eV
- prove technique potential and scalability:
 - ► assess EC *Q*-value
 - assess systematic errors

- Transition Edge Sensors (TES) with ¹⁶³Ho implanted Au absorbers
 - ► 6.5×10^{13} nuclei per detector $\rightarrow 300$ dec/sec
 - $\Delta E \approx 1 \text{eV}$ and $\tau_{R} \approx 1 \mu \text{s}$
- 1000 channel array
 - ► $6.5 \times 10^{16 \, 163}$ Ho nuclei $\rightarrow \approx 18 \mu g$
 - ► 3x10¹³ events in 3 years

→ Project Start: 1 Feb 2014

B. Alpert et al, accepted in EPJ-C, arXiv:1412.5060 http://artico.mib.infn.it/nucriomib/experiments/holmes

Andrei Puiu, PPP 2015 Neutrino Physics and Astrophysics

HULMES

European Research Council

Sensitivity on m

Best choice: LOW TEMPERATURE DETECTORS

Calorimeters coupled to Transition Edge Sensors with RF multiplexed readout Microwave Kinetic Inductance Detectors (MKIDs) with implanted Holmium

HOLMES baseline

Requirements for 0.2 eV sensitivity

A_{eta}	j R	ΔE	$N_{ m ev}$	exposure	$Q_{\rm EC} = 2200 {\rm eV}$
[Hz]	[°s]	[eV]	[counts]	[det×year]	bkg = 0
1	1	1	2.8×10 ¹³	9.0×10^{5}	
1	0.1	1	1.3×10^{13}	4.3×10^{5}	▶ 5000 pixels/array
100	0.1	1	4.6×10^{13}	1.5×10^{4}	3 arrays
10	0.1	1	2.8×10^{13}	9.0×10^{4}	1 vear
A _β	j R	ΔE	N _{ev}	exposure	~2*10 ^{17 163} Ho nuclei
[Hz]	[°s]	[eV]	[counts]	[det×year]	
1	1	1	3.8×10 ¹⁵	1.2×10^{8}	$Q_{\rm EC} = 2000 eV$
1					$b \log - 0$
L	0.1	1	1.6×10^{15}	5.3×10^{7}	$\partial x_{\mathcal{O}}^{0} = 0$
100	0.1 0.1	1 1	1.6×10^{15} 9.8×10 ¹⁵	5.3×10^{7} 3.1×10^{6}	$\partial x_{3} = 0$
1 100 10	0.1 0.1 0.1	1 1 1	$\begin{array}{c} 1.6 \times 10^{15} \\ 9.8 \times 10^{15} \\ 3.8 \times 10^{15} \end{array}$	5.3×10^{7} 3.1×10^{6} 1.2×10^{7}	60000 pixels/array
1 100 10 10	0.1 0.1 0.1 1	1 1 1 1	$\begin{array}{c} 1.6 \times 10^{15} \\ 9.8 \times 10^{15} \\ \hline 3.8 \times 10^{15} \\ 9.8 \times 10^{15} \end{array}$	5.3×10^{7} 3.1×10^{6} 1.2×10^{7} 3.1×10^{7}	60000 pixels/array 5 arrays

Low temperature calorimeters

Dilution refrigerator

How to measure

- ★ Superconductor kept at the bottom of the transition region
- ★ Incoming radiation ($E_{\gamma} > 2\Delta$) breaks cooper pairs in the superconductor
- ☆ Pair braking causes resistivity increase in the TES circuit
- ☆ A coupled DC-SQUID is used to measure current variation
- ★ For multiplexing, a RF-SQUID can be coupled to a resonant circuit which is continuously excited with a microwave signal

Microwave Kinetic Inductance Detector

- ★ Pair breaking radiation ($E_{\gamma} > 2\Delta$) creates quasi particle density (n_{qp})
- \star New quasi-particles change the surface impedance
- * A resonant RLC circuit litographed in a thin film is used
 - to sens $\rm L_{S}$ and $\rm R_{S}$
- $Z_{s}=R_{s}(n_{qp})+j\omega L_{s}(n_{qp})$
- L_s: kinetic inductance
- R_s : dissipation

★ To monitor the resonant circuit, it is continuously excited with a microwave signal

TES operation

10

96

98

100

Temperature [mK]

102

104

nce [mOhm]

 $\Delta \mathrm{T}
ightarrow \Delta \mathrm{R}$ -

- Gold&Bismuth absorber doupled to a Transition Edge Sensor (TES)
- ¹⁶³Ho implanted in Au, covered with Bi for better thermal performance
- MoAu or MoCu TES, $T_c \approx 100 \text{ mK}$
- Detectors suspended on SiN_x to reduce thermal conductance towards bath
- Rf-SQUID readout

MKIDs operation

Incident photons change the surface impedance of a superconductor through the Kinetic Inductance Effect. Proposed for the first time in in 2003, P.K. Day et al. S21 | [dB] Nature 425 (2003) 817. Feedline

CC

-10

2**п**

δP

f0

f0

 δf

Devices designed to operate in nonequilibrium mode and tested with low energy X-ray sources collimated in an area of 300 μ m around the center of the inductor by a collimator

Lm+l

Readout: homodyne detection

Either detector types rely on a resonant circuit that is sensible to inductive variation

- A microwave signal is generated by a synthesizer and then split in two;
- One copy is sent into the cryostat and onto the transmission line of a microresonator chip, through a HEMT (High Electron Mobility Transistor) amplifier, and back out of the cryostat to an IQ mixer (RF);
- The outputs I and Q represent the real and imaginary parts of the transmitted signal S 21 (forward transmission coefficient), and are easily converted to describe the phase and amplitude of the signal transmitted past the resonator.

RF-SQUID readout for TES

- The SQUID traduces changes in input current to changes in phase of a microwave signal.
- A SQUID shows a periodic response function to flux variation
- We use flux-ramp modulation to linearize the response; The amplitude of the ramp is tuned such that it provides $\sim 3\Phi_0$ of flux per ramp period

Multiplexing

A two channel *brute force* multiplexed system is used to read two different resonators using only one coax line through all the cryogenic system.

- MKIDs are directly excited by the incoming microwave
- A SQUID coupled to a resonator is used in case of TES employment

Multiplexing/2

LC resonator transmission

Holmium production

- ¹⁶³Ho production by nuclear reaction
 - high yield
 - low by-products contaminations (in particular ^{166m}Ho, β τ_{1/2}=1200y)
- ¹⁶³Ho separation from Dy, Er, ...
 - radiochemistry (before and/or after irradiation)
 - magnetic mass separation
- ¹⁶³Ho embedding in detector
 - implantation +magnetic separation
 - Au film deposition for full containment

Andrei Puiu, PPP 2015 Neutrino Physics and Astrophysics

HOLMES baseline

¹⁶²Er (n, γ) ¹⁶³Er $\sigma_{\text{thermal}} \approx 20b$ ¹⁶³Er \rightarrow ¹⁶³Ho + ν_{a} $\tau_{14}^{EC} \approx 75$ min

sputter source

TES production

- single pixel development @Genova
 - optimize design for speed and resolution
 - ▷ define process for ¹⁶³Ho implantation
- array design @Genova
- subcontract array fabrication (NIST, Boulder, USA)
 - \triangleright subcontractor fabricates array with 1 μ m Au absorber
- Genova completes array fabrication
 - ▷ Genova implants ¹⁶³Ho at shallow depth (≈100Å)
 - $\triangleright\,$ Genova covers implant with $\,1\,\mu m$ Au absorber
 - \triangleright Genova completes array fabrication (SiN_x release)

¹⁶³Ho

TES for HOLMES R&D

- First test on ramp and resonant circuit in run0 (Sep 2014) Cryogenic system (Oxford Instruments TL-400 dilution refrigerator) prepared with new RF line and multiplexing readout
- TES test due to be done in run1 (Feb 2015)

Ramp test \rightarrow OK

Readout RF circuit resonances checked \rightarrow OK

Thermal mode MKIDs

- A temperature change can produce an identical increase of quasiparticle population of an external pair-breaking, J. Gao et al. J. Low Temp. Phys. 151 (2008) 557
- ★ The effect of a small variation in temperature leads to a change in the surface impedance due to a change in kinetic inductance L_s .
- The amplitude and phase shifts of S 21
 depends on the increase in equilibrium
 thermal quasiparticle population due to the
 bath temperature variation.

- devices with critical temperature low enough (T_c < 500 mK);
 - the sensitivity improves as the T_c is lowered ($\delta f \propto 1/T_c^2$);
 - low energy gap Δ ;
 - slower recombination time $\tau_{_{qp}}$ (i.e. low G-R noise) ;
- operating at very low temperature to minimize the absorber thermal capacity (T< T_c /4);

Very sensible detectors if:

MKIDs with absorber

- Energy resolution for a metal absorber (i.e. Gold) 200 μm × 200 μm × 2 μm working at T = 50 mK, it is possible to have resolution around 1 eV
 Time resolution: for resonator frequencies = (1 ÷ 6) GHz range, rise time around 1 μs or less is achievable.
 - Metal Absorber: thermally coupled with the inductive part and suspended Si_2N_3 membrane:
 - Absorbers with a very high stopping power are needed in order to avoid loss of energy and to keep the thermal capacity as low as possible.
 - A thickness of 5 µm of Gold provides a stopping power close to 100% radiation of energies up to 6 keV and 45% at 20 keV;

Possible geometry design

Thank you for your attention