

Probing the neutrino mass with calorimetric electron capture spectroscopy

The HOLMES proejct

ERC-AdG-2013 no. 340321

A. Giachero on behalf of the HOLMES collaboration

University and INFN of Milano Bicocca

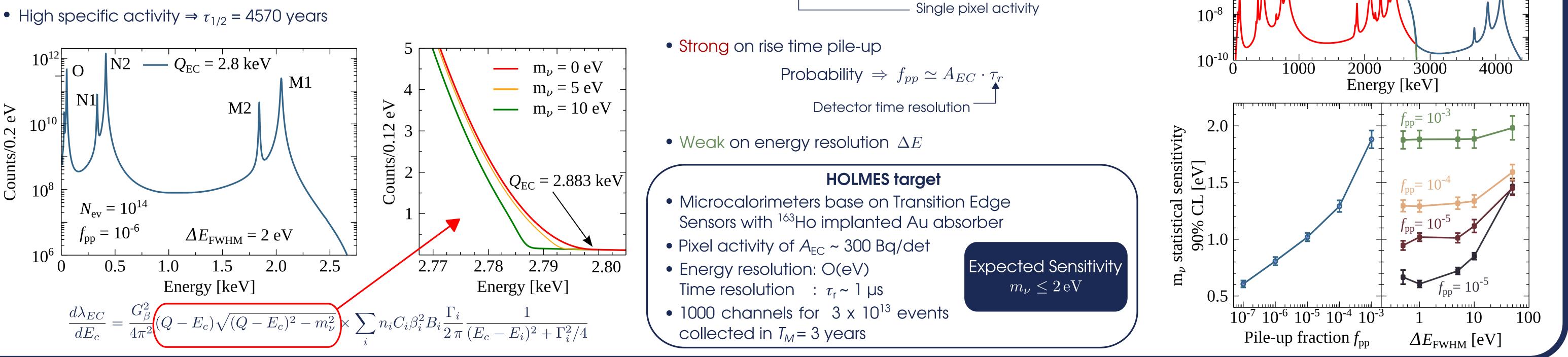
Overview

HOLMES is an experiment with the aim to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the Electron Capture decay of the artificial isotope ¹⁶³Ho. The most suitable detectors for this type of measurement are low temperature thermal detectors. HOLMES will deploy 1000 detectors of low temperature microcalorimeters with implanted ¹⁶³Ho nuclei with the aim to extract information on neutrino mass with a sensitivity below 2 eV. As soon as the embedding technique will be optimized the first sub-arrays will provide useful data about the EC decay of ¹⁶³Ho together with a first limit on neutrino mass.

B. Alpert et al. Eur. Phys. J. C75 (2015) 112

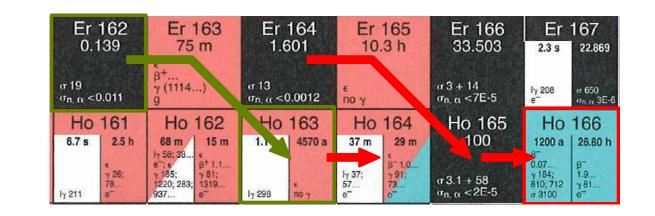
2500

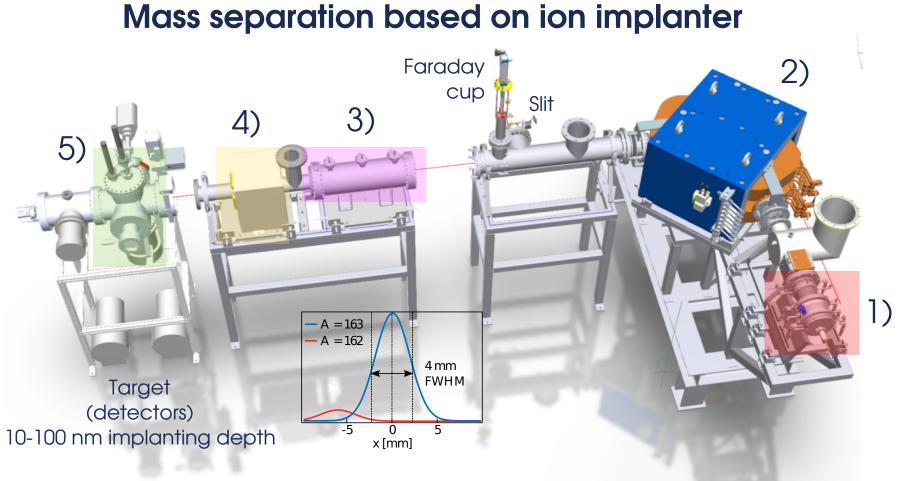
3000


¹⁶³Ho Electron Capture Decay Pile-up Spectrum Statistical sensitivity $\Sigma(m_v)$ from MC simulations A. Nucciotti, Eur. Phys. J. C 74 (2014) 3161 • Electron capture from shell \geq M1 \longrightarrow ¹⁶³Ho + e⁻ \rightarrow ¹⁶³Dy* + $\nu_e(E_c)$ 10^{-2} $t_{\rm pp} = 10^{-4}$ A. De Rujula and M. Lusignoli, • Strong on statistic • Calorimetric measurement of Dy atomic de-excitations Phys. Lett. B 118 (1982) 429. $N_{ev} = A_{EC} \cdot N_{det} \cdot T_M \implies \Sigma(m_{\nu}) \propto N_{ev}^{1/4}$ [a.u.] 10^{-4}

Measurement live time

Number of detectors




- Rate at end-point and v mass sensitivity depend on Q_{FC} S. Eliseev et al, \Rightarrow Measured with Penning trap: $Q_{FC} = 2.833$ keV; Phys. Rev. Lett. 115 (2015) 062501
- High specific activity $\Rightarrow \tau_{1/2} = 4570$ years

¹⁶³Ho production and embedding

Production by neutron activation of enriched ¹⁶²Er

Deposition and target Chamber

Counts

10-6

- $^{162}\text{Er}(n,\gamma)^{163}\text{Er} \rightarrow ^{163}\text{Ho} + \nu_e, \, \sigma_{therm} = 20 \,\text{b}, \, \tau_{EC}^{1/2} = 75 \,\text{min}$
- Irradiation at the ILL reactor in Grenoble with a high thermal flux $\Phi_n = 1.3 \cdot 10^{15} \, n/\mathrm{cm}^2/2$
- Cross section burn up ${}^{163}\mathrm{Ho}(n,\gamma){}^{164}\mathrm{Ho}$ not negligible (~200 b)
- Unavoidable 165 Ho (n, γ) 166m Ho (mostly from 164 Er (n, γ) 165 Er) $\Rightarrow \beta^{-}: \tau_{1/2} = 1200 \,\mathrm{y}, Q = 5.97 \,\mathrm{keV}$ $\Rightarrow A(^{163}\text{Ho})/A(^{166m}\text{Ho}) = (100 - 1000)$
- Chemical pre-purification and post-separation at PSI (based on ion exchange chromatography) leaves a 166:163 ratio better than 1:1000
- Thermoreduction to obtain the metallic Ho target for implantation $Ho_2O_3 + 2Y(met) \rightarrow 2Ho(met) + Y_2O_3 @ 2000^{\circ}C$
- 1) Argon penning sputter ion source with an acceleration section allowing to reach a maximum energy of 50 KeV
- 2) Magnetic dipole mass analyzer with magnetic field up to 1.1 Tesla;
- 3) Focusing electrostatic triplet;
- 4) Magnetic scanning stage;
- 5) Deposition and target Chamber

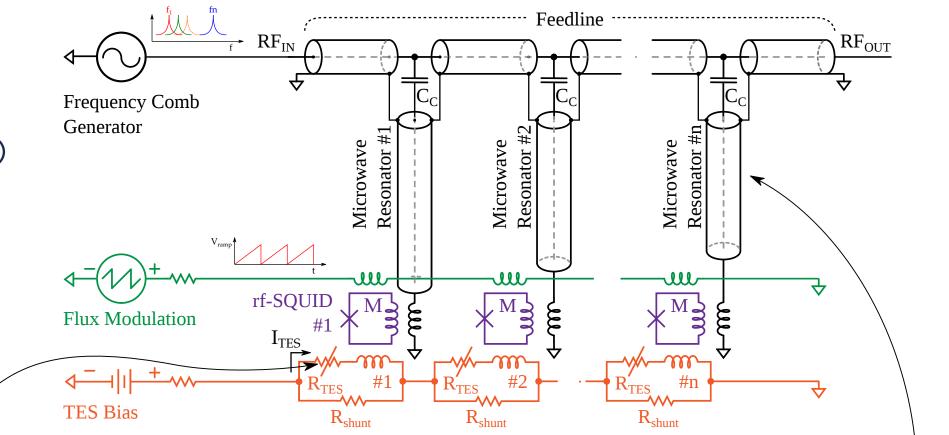
From MC simulations \Rightarrow beam spot ~4 mm FWHM at the target chamber.

Currently under

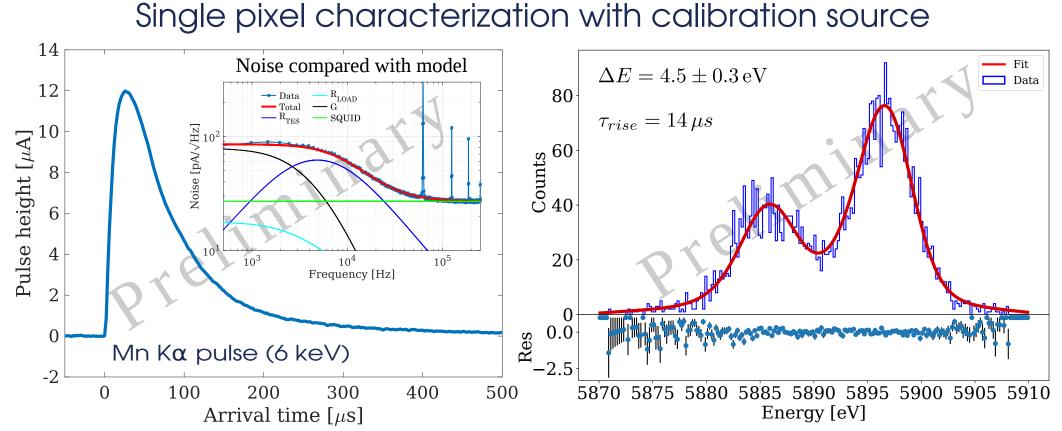
comissioning

@INFN Genova

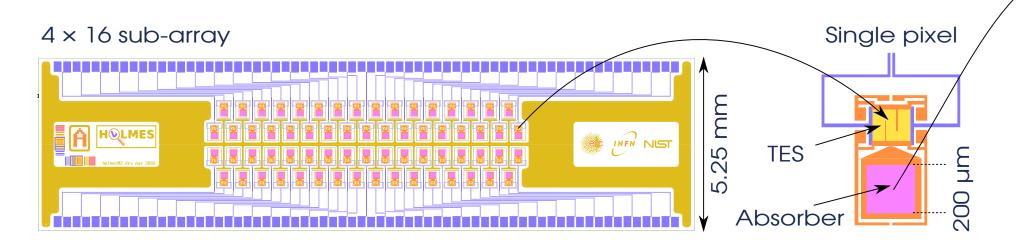
Expected 163/166m separation $\geq 5\sigma$.

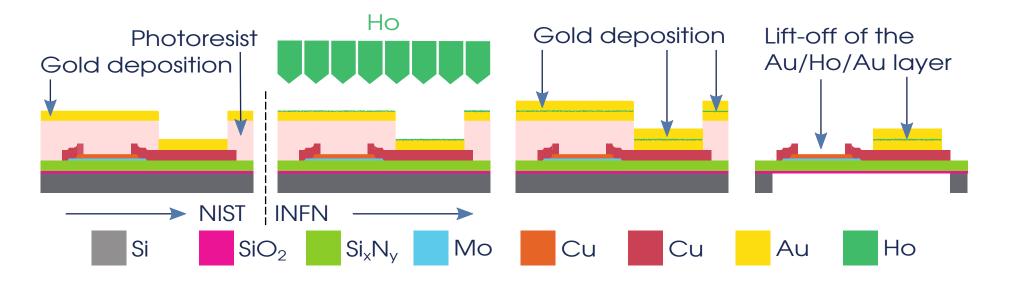

- To obtaion $A_{\rm EC}$ ~ 300 Bq/det, the ¹⁶³Ho concentration in absorbers saturate because ¹⁶³Ho sputters off Au from absorber
- Effect compensated by Au co-evaporation during the implantation procedure
- Absorbers finalization with 1 µm Au layer deposited in situ to avoid oxidation
- Au deposition rate ~100 nm/hour (tunable with RF power or with Ar energy)
- Currently under comissioning @University of Milano-Bicocca

Detectors and Read-out

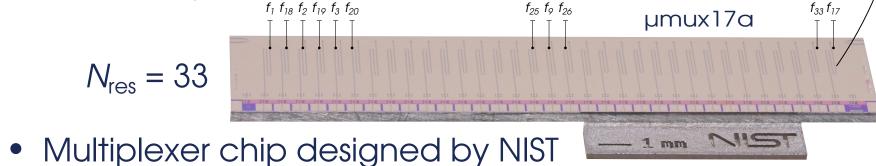

Low Temperature microcalorimeters

- Sensor: TES Mo/Au bilayers, critical temperature $T_c = 100 \text{ mK}$
- Absorber: Gold, 2 μ m thick for full e⁻/ γ absorption (sidecar design)





Detector performances



- Produced @ NIST (Boulder, CO, USA)
- ¹⁶³Ho implanting and absorber finalization @ INFN-GE (Italy)
- 4×16 linear sub-array designed for high implant efficiency

- SQUID coupled with DC biased TES and a $\lambda/4$ -wave resonant circuit
- Readout with flux ramp demodulation to linearize the SQUID response

- 33 resonances packed in 500 Hz
- 2 MHz BW per resonance (for a time resolution $\sim 1 \, \mu s$)
- Resonators spacing ~14 MHz (to avoid crosstalk)
- ROACH2-based read-out system: demodulation and triggering in real time performed by FPGA Virtex-6
- A rise time of 15 μ s and a sampling frequency of $f_s = 500$ kHz allow an effective time resolution of 3 µs by Wiener filtering and Singular Value Decomposition-based algorithms
- The development of a 64-channel read-out and multiplexing system is currently in progress
- This setup will be fundamental to acquire the data from the first two microcalorimeter 4 \times 16 sub-arrays with ¹⁶³Ho nuclei implanted starting from 2019

Neutrino 2018 - XXVIII International Conference on Neutrino Physics and Astrophysics

Andrea.Giachero@mib.infn.it