

Pixel Design for HOLMES

motivation, design, and performance

James Hays-Wehle,*[†] Daniel Schmidt,* Carl Reinstema,* Angelo Nucciotti,[†] Daniel Swetz,^{*} Joel Ullom^{*}

†INFN Sezione di Milano-Bicocca

⇤*National Institute of Standards and Technology*

HOLMES

- TES embedded with ¹⁶³Ho
- *•* Measure total energy, *Q*, of decay
- *•* Spectrum endpoint sensitive to neutrino mass

HOLMES

- TES embedded with ¹⁶³Ho
- *•* Measure total energy, *Q*, of decay
- *•* Spectrum endpoint sensitive to neutrino mass
- *•* 1000 pixels
- *•* 300 cps/pixel
- *•* Microwave Multiplexed

Demands of the HOLMES Pixel

- *•* high count rate
- *•* multiplexable
- *•* implanted ions

Demands of the HOLMES Pixel

• **high count rate**

- *•* multiplexable
- *•* implanted ions

Compatibility with High Count Rate /47803!9"0!89,9#89#.,3!8038#9#;#94!-4!56!789:!;!147!,!*"*=;,3:0!41!'?'!7'?@:!A0'?!\$420!.,70!2:89!9"0701470!-0!

 F inal sensitivity on m_{ν_e} depends mostly on statistics and pileup. **89,989 Energy resolution only a slight concern.**

Two issues with pile-up

Identifying Pile-up

• Coincident pulses that could distort spectra can be cut

Two issues with pile-up

Identifying Pile-up

• Coincident pulses that could distort spectra can be cut

Preventing Pile-up

- *•* Need to integrate many events in a few years
- *•* 300 Hz/pixel planned
- Piled-up pulses are difficult to analyze

• Two common events could be coincident enough to fake a rare one.

• Two common events could be coincident enough to fake a rare one.

• Two common events could be coincident enough to fake a rare one.

- *•* Two common events could be coincident enough to fake a rare one.
- *•* Identification depends on both sampling and rise time.

Coincident Pulses

Two pulses, green and blue, arrive separated by ΔT Measured sum has kink

For a given ΔT , detectability of kink depends on rise time, τ_{+}

Simulated Pile-Up

true spectrum and pileup spectrum sum to measured spectrum.

Two issues with pileup

Identifying Pile-up

Want pulse with short **rise time**

Two issues with pileup

Identifying Pile-up

Want pulse with short **rise time**

Preventing Pile-up

Want pulse with short **duration** (fall time)

Control of fall time

TES parameters

- C , and α set by targeted energy range. (For HOLMES, \sim 3 keV)
- $E_{\text{max}} \propto C/\alpha$
- *•* Pulse speed chiefly determined by thermal conductance
- $\tau_{-} \propto C/G$

Goal

Increase *G* to improve pixel $speed$ Pulses from non-HOLMES X-ray pixels. $\tau > 1$ ms

Control of fall time

TES parameters

- C , and α set by targeted energy range. (For HOLMES, \sim 3 keV)
- $E_{\text{max}} \propto C/\alpha$
- *•* Pulse speed chiefly determined by thermal conductance
- $\tau_{-} \propto C/G$

Goal

Increase *G* to improve pixel $speed$ Pulses from non-HOLMES X-ray pixels. $\tau > 1$ ms

Historical control of *G*

• TES thermally isolated on a SiN*^x* membrane.

Historical control of *G*

- *•* TES thermally isolated on a SiN*^x* membrane.
- *•* Perforated membranes used for *smaller G* to meet bandwidth constraints.
- *•* Bare silicon *G* too much, fixed.

G **increasing feature: perimeter**

- *•* On a membrane, *G* scales with perimeter.
	- *•* Understood from 2-D ballistic phonon transport
- *•* Test design doubles *G* relative to baseline device

G **increasing feature: patches**

- *•* Copper patches create thermal link directly to the frame
- *•* Added *G* increases linearly with metal volume on frame
	- *•* Understood from e-p coupling theory
- *•* Test design trebles *G* of baseline device

National Institute of Standards and Technology • U.S. Department of Commerce JPHW (INFN&NIST) — [TES for HOLMES](#page-0-0) — 6 September 2016 — Slide 15/29

10 pW/K 1 nW/K

Predictable lithographic control of *G* over an order magnitude.

Hays-Wehle *et al.*, "Thermal Conductance Engineering for High-Speed TES Microcalorimeters"

J. Low Temp. Phys. 2016 doi:10.1007/s10909-015-1416-5

Demands of the HOLMES Pixel

- *•* high count rate
- *•* **multiplexable**
- *•* implanted ions

Multiplexing Scheme

Multiplexer

- *•* 2 MHz per channel full bandwidth
- *•* 33 channels per 550 MHz ROACH2 ADC

Multiplexer

- *•* 2 MHz per channel full bandwidth
- *•* 33 channels per 550 MHz ROACH2 ADC
- 2 Φ_0 ramp \rightarrow corresponds to a sampling rate of 500 kHz
- imposes speed limit on rise time <1 A/s or τ_{+} > 20 μ s

Expectations for *µ***Mux**

- *•* TES Johnson noise dominates signal to noise, readout a non-issue
- *•* Tested *µ*Mux device has low enough noise
- (\approx 27 pA/ $\sqrt{\text{Hz}}$)

Demands of the HOLMES Pixel

- *•* high count rate
- *•* multiplexable
- *•* **implanted ions**

- *•* Ion absorber pad to the side
- *•* Thermal link is integrated copper structure
- *•* 1 *µ*m layer of gold
- *•* Implanted holmium capped with more gold

- *•* Ion absorber pad to the side
- *•* Thermal link is integrated copper structure
- *•* 1 *µ*m layer of gold
- *•* Implanted holmium capped with more gold

- *•* Ion absorber pad to the side
- *•* Thermal link is integrated copper structure
- *•* 1 *µ*m layer of gold
- *•* Implanted holmium capped with more gold

- *•* Ion absorber pad to the side
- *•* Thermal link is integrated copper structure
- *•* 1 *µ*m layer of gold
- *•* Implanted holmium capped with more gold

Device features

Device has sidecar absorber AND enhanced perimeter

Performance requirements

We want:

• Total pulse duration < 3 ms

Performance requirements

We want:

- *•* Total pulse duration < 3 ms
- 20 μ s $< \tau_+ < 50 \mu$ s
- *•* (faster for pile-up, slower for multiplexing)

Performance requirements

We want:

- *•* Total pulse duration < 3 ms
- 20 μ s $< \tau_+ < 50 \mu$ s
- *•* (faster for pile-up, slower for multiplexing)
- And $\Delta E < 10$ eV

Prototype speed

- *G* increased \sim 6x (580 pW/K from \sim 100 pW/K)
- *•* Total pulse duration *<* 1 ms

Prototype speed (high *L***)**

- *G* increased to 570 pW/K (from \sim 100 pW/K)
- $\tau_+ \approx \tau_- \approx 60 \mu s$ (Critically damped)
- At target sample rate (500 kHz) sufficient points on rising edge

Prototype speed (low *L***)**

- Different choice of inductance gives faster rise time
- \bullet $~\tau_+ \approx$ 10 $\mu\mathrm{s}$ shown above, but also $\tau_- \approx$ 130 $\mu\mathrm{s}$
	- *•* Requires MHz sampling rate

Prototype Resolution

- *•* 3.7 eV FWHM resolution demonstrated at 5.9 keV
- *•* No low energy tail
- *•* 3 eV at 1.5 keV

Conclusions

- *•* Pixel requirements similar to that for FAST x-ray device
- *•* Rise and fall times are tuned with *L* and *G* to match requirements

Conclusions

- *•* Pixel requirements similar to that for FAST x-ray device
- *•* Rise and fall times are tuned with *L* and *G* to match requirements
- *•* Can be tuned again for future upgrades
- *•* Prototype design soon to be used in implanted production arrays

Thank You!

resolution at 1.5 keV Est performance: $r = 5$

3 eV shown at 1.5 keV, closer to 2.8 keV than 5.9 keV is.

Performance Metrics

Fig. 4 Monte Carlo estimate of HOLMES neutrino mass statistical sensitivity for $N_{ev} = 3 \times 10^{13}$ (lower) or 10^{10} (upper)
and with $f_{pp} = 3 \times 10^{-4}$, $\Delta E_{\text{FWHM}} = 1 \text{ eV}$, and no background. tistical sensitivity for $N_{ev} = 3 \times 10^{13}$ (lower) or 10¹⁰ (upper)

Fig. 3 163 Ho decay experiments statistical sensitivity dependence on the total statistics N_{ev} for $\Delta E_{\rm FWHM}=1\,{\rm eV}$; $\beta_{\text{PP}} = 10^{-5}$, and no background.
*f*_{pp} = 10⁻⁶, and no background. tron flux of about 10¹⁵ n/s/cm² [21]. At this highflux reactor, neglecting the ¹⁶³Ho burn-up through the reaction ¹⁶³Ho(*n,*)¹⁶⁴Ho, the ¹⁶³Ho production rate uary 31*st* 2019. HOLMES continues the research pro- $\mathfrak{g}_{\mathcal{A}}$ and $\mathfrak{g}_{\mathcal{A}}$ is the 26 163Ho $\mathfrak{g}_{\mathcal{A}}$ 163Ho $\mathfrak{g}_{\mathcal{A}}$ 163Ho $\mathfrak{g}_{\mathcal{A}}$ 163Ho $\mathfrak{g}_{\mathcal{A}}$

Example 1.1 Final sensitivity on m_{ν_e} depends mostly on $\frac{1}{10^{19}}$ $\frac{1}{10^{19}}$ $\frac{1}{10^{19}}$ $\frac{1}{10^{18}}$ $\frac{1}{10^{18}}$ $\frac{1}{10^{18}}$ $\frac{1}{10^{18}}$ $\frac{1}{10^{18}}$ $\frac{1}{10^{18}}$ $\frac{1}{10^{18}}$ $\frac{1}{10^{18}}$ Statistics and pileup.

Bonus Challenge

R(*I, T*) surface in the 2-fluid model. D. Bennett et al DOI:10.1007/s10909-011-0431-4

Previous experiments show a decreasing trend of α with *G*.

The two fluid model predicts that α is inversely proportional to I/I_C . Increasing *G* means increasing the bias current, which in turn suppresses α . We are exploring devices with higher resistances and fewer bars to compensate for this effect.

• Begin with TES with Bismuth absorber

• Begin with TES with Bismuth absorber

- *•* Begin with TES with Bismuth absorber
- *•* Ho ions implanted in gold above TES

- *•* Begin with TES with Bismuth absorber
- *•* Ho ions implanted in gold above TES
- *•* Capped off with extra Bismuth

- *•* Begin with TES with Bismuth absorber
- *•* Ho ions implanted in gold above TES
- *•* Capped off with extra Bismuth
- Gold suppresses T_c of area beneath.

- *•* Begin with TES with Bismuth absorber
- *•* Ho ions implanted in gold above TES
- Gold suppresses T_c of area beneath.
- Double *T_C* observed.

NEW scheme

- *•* Moves ion absorber pad to the side
- *•* Thermal link is integrated copper structure
- *•* Superconducting transition is restored
- *•* Eliminates bismuth layer

Two-Body effects

Dark testing

- *•* Impedance and noise suggest two body structure:
- $C_1 \approx 0.2$ pJ/K (TES), $C_2 \approx 0.5$ pJ/K (Absorber)
- and $G_2 \approx 70$ nW/K
- *•* Born out by pulse shape

Two-Body effects II

Dark testing

- $G₂$ 4x lower than predicted by Wiedemann-Franz
- *•* And shows no variation between connection designs
- *•* Possibly connection between metal layers?
- However, $G_2 >> G$, so $G_2 \rightarrow \infty$ makes only marginal difference to noise, fall time
- New fabrication run to investigate regardless