University of Genoa

Neutrino Experiment

Flavio Gatti, University and INFN of Genova

Neutrino

This word is now very popular!

"Wonderfully lucid...enlightening and entertaining." —Publishers Weekly (starred review) "Science writing at its best." —Kirkus Reviews

> The Case of the

and Other Curious Phenomena of the

Universe

R

LTD16 Grenoble

JOHN GRIBBIN Bestselling author of In Search of Schrödinger's Cat

Books, TV, Newspaper, Web...

2

... and it is cool!

LTD16 Grenoble

My son too!

- Edoardo: "Daddy, how the spacecraft on Pluto works? I don't see solar cells!
- Flavio: "Uhm, it's complicate... nuclear generator..."
- Edoardo: " I've understood: neutrinos push the spacecraft"
- Flavio: "Oh never considered -I Think-. If I consider the cross section against the solar neutrinos, the solar wind, the magnetic moment and maybe the coherent scattering... neutrino truster? " -I say- I am too old, it is a physics for the new generation

4

LTD16 Grenoble

Neutrino and DM has driven the first steps of the Low Temperature Detector Community

Kasper ++	LIST OF PARTICIPA	ATS
Name .	Field Address	Phase u.
YK Protel	the Plenck Justiful for Popula in Roter physic Hur	ich.
J.L BASSEVANT	LPTHE Town là l'a Elliscente Pat et conis	olage p. 4105
A. BARONE	ISTITUTE & EIGERNEDIC	& KKR. MANAMEL
S. Vitale	Università de games -9	guelo.
PITEEUND	Have Planck . Turt of "Physics we Astrophysics Mendon	k
W. Linking	Donier-Sohn Jack , th	ourses happen
TUMMIKOSKI	CERN, ECHEVE	
R.S. Raghood	an 13ell Loborato Murray Hill J	VJ 07922 USA
P. SPILLANTINI	Laboratori Nanionali de I 00044 Franchi Rom	French (34)95031
L. STODOLSKY	MAX PLANCE MUNICH	H. M. 31 893/231
LEGER	GPS ENS	
- GONZALEZ- MEST	TRE, Luis LAPP	ANNECY
F. Vitanicer	CONNET Para	
BERGESETETE	LPNING FORIS	
WILSON	PUPUERFORD LABOR	SHERY CHUTOK)

LTD16 Grenoble

Low Temperature Detector 1st Workshop

What we know.

- Since the flavour oscillations paradigm has been proved, a renewed interest for investigating the absolute mass scale is grown.
- The paradigm is based on kinematics of a system in which Mass eigenstates are rotated respect to the F

• Solar neutrino undertakes flavour oscillation travelling away from the source. The probability detecting same flavour

$$P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \sin^2 2\theta_{12} c_{13}^4 \sin^2 \frac{\Delta m_{21}^2 L}{4E} - \sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \frac{\Delta m_{31}^2 L}{4E} + s_{12}^2 \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right]$$

This holds if the mass is not zero

TD16 Grenoble

What we don't know

After more than 80 years after the Fermi theory of $\boldsymbol{\beta}$ decay and the neutrino hypothesis

- Dirac or Majorana Neutrino?
- Normal (NH) or inverted mass ordering (IH)?
- The absolute mass scale ?

TD16 Grenoble

- If the Majorana nature can be established, what is the CP violating phase
- If the Majorana nature can be established, what are the CP violation phases?
- Extra light or heavy sterile neutrinos?
- Neutrino has spin, what about the magnetic moment?
- Theory predicts Coherent Nuclear Scattering never observed

The mass spectrum

LTD16

Grenoble

Kinematical methods

• β decay: $m_j \neq 0$ affect β -spectrum endpoint. Sensitive to the "effective electron neutrino mass": $\mathbf{m}_{\beta} = \{ \sum_j m_j^2 (|U_{ej}|^2) \}^{1/2}$ Flavor-Mass Mixing Parameter

- $0v2\beta$ decay: can occur if $m_j \neq 0$. Sensitive to the "effective Majorana mass": $\mathbf{m}_{\beta\beta} = \{ \sum_j m_j (|U_{ej}|^2 e^{i\phi_j} \}$ Flavor-Mass Mixing parameter + imaginary phase
- Cosmology: m_j ≠ 0 can affect large scale structures in (standard) cosmology constrained by CMB and not CMB (LSS,Lya) data. Sensitive to:
 - $\mathbf{m} = \sum_{j} m_{j}$ Flavor-Mass Mixing independent

16 Grenoble

Mass scale

11

- The absolute mass scale of neutrinos remains today an open question subject to experimental investigation from both particle physics and cosmology.
- Over the next decade, a number of proposals/projects from both disciplines will aim to test the mass scale further to the very limits of the predictions from oscillation results → sub eV scale.
- After the discovery of a finite neutrino mass, presently the main research theme is: "We need to imagine and run a sub eV PRECISION EXPERIMENT "
- I will focus this talk on the direct experimental approach: this is a not exhaustive seminar, apologize if many arguments are skipped.

Cosmological constraints (overview)

Imprint of cosmological neutrinos upon the structure evolution of the universe is testable by Cosmology observations

TD16

Grenoble

12

What is the a neutrino for Cosmology

13

F.Gatti, Fri 24th, July 2015

- Behaves like radiation at T~eV
- Eventually(possibly)becomes non-relativistic, behaves like matter
- Small interactions (not perfect fluid)
- Has a high velocity dispersion(is"HOT")

Latest Cosmological Constraints: Plank

Latest Cosmological Constraints: Plank

Parameter	TT	TT+lensing	TT+lensing+ext	TT, TE, EE	TT, TE, EE+lensing	TT, TE, EE+lensing+ext
$\overline{\Omega_{\kappa}}$	$-0.052^{+0.049}_{-0.055}$	$-0.005^{+0.016}_{-0.017}$	$-0.0001^{+0.0054}_{-0.0052}$	$-0.040^{+0.038}_{-0.041}$	$-0.004^{+0.015}_{-0.015}$	0.0008+0.0040
Σm_{ν} [eV]	< 0.715	< 0.675	< 0.234	< 0.492	< 0.589	< 0.194
N _{eff}	$3.13^{+0.64}_{-0.63}$	$3.13^{+0.62}_{-0.61}$	$3.15^{+0.41}_{-0.40}$	$2.99^{+0.41}_{-0.39}$	$2.94_{-0.38}^{+0.38}$	$3.04^{+0.33}_{-0.33}$
<i>Y</i> _P	$0.252^{+0.041}_{-0.042}$	$0.251^{+0.040}_{-0.039}$	$0.251^{+0.035}_{-0.036}$	$0.250^{+0.026}_{-0.027}$	$0.247^{+0.026}_{-0.027}$	$0.249^{+0.025}_{-0.026}$
$dn_s/d\ln k$	$-0.008^{+0.016}_{-0.016}$	$-0.003^{+0.015}_{-0.015}$	$-0.003^{+0.015}_{-0.014}$	$-0.006^{+0.014}_{-0.014}$	$-0.002^{+0.013}_{-0.013}$	$-0.002^{+0.013}_{-0.013}$
<i>r</i> _{0.002}	< 0.103	< 0.114	< 0.114	< 0.0987	< 0.112	< 0.113
w	$-1.54^{+0.62}_{-0.50}$	$-1.41^{+0.64}_{-0.56}$	$-1.006^{+0.085}_{-0.091}$	$-1.55^{+0.58}_{-0.48}$	$-1.42^{+0.62}_{-0.56}$	$-1.019^{+0.075}_{-0.080}$

Next Possible Cosmological Constraints

- Lensing of the CMB signal Makes CMB sensitive to smaller neutrino masses
- $\sigma(m_v) \rightarrow 0.01 \text{ eV}$ with CMB polarisation missions.

LTD16 Grenoble

My considerations about Cosmological Constraints

- The neutrino mass limits tend to vary depending on the data used and the exact model employed.
- Some tension between data sets exists.
- Possible mixing of not fully independent data (correlation well estimated?)
- Next generation of CMB missions aim to push well down into the inverted hierarchy region
- But systematic uncertainties and small order corrections will become increasingly important
- \rightarrow DIRECT SEARCHES IN LABORATORY ARE NEEDED

Laboratory Direct Methods

Double beta decay

A tricky question arose this year. Let start with 0v decay

Grenoble

TD16

Double beta decay

For 0v processes two scenarios have been considered: (1) Emission and re-absorption of a light (MeV) neutrino. (2)Emission and re-absorption of a heavy (GeV) neutrino.

Grenoble

16

F. lachiello, Yale

Double beta decay

- The data compilation suggest the effective factor g_A in the nuclear matrix element is lower than one fixed in almost all calculations $(g_A = 1.269)$
- This has been seen on $0v \ 2\beta$ decay and the half life goes like g_A^4
- The physics of 2v 2β decay is not exactly the same and this effect can be negligible on the present experiments but the investigations are under way.

CUORE: one of the major achievements in LTD large experiments

Masiero (Theoretician), INFM Management vist CUORE

LTD16 Grenoble

Katrin

Grenoble

LTD16

Project8

F.Gatti, Fri 24th, July 2015

LTD16 Grenoble

Mass measurement with cryogenic µ-calorimeter

- It's ideally an Energy Dispersive Spectroscopical Detector
- It's a fast (0.1-1 $\mu s)$ true thermal calorimeter
- Energy Sensitivity at the eV scale needs very low heat capacity at the scale less than pJ/K
- The Energy Resolution Intrinsic is ultimately limited by the thermal fluctuation noise:
- Sub-K operating temperatures are needed (0.01-0.1 K) to reach eV resolutions
- IN PRINCIPLE THEY ARE A TOOL FOR VERY DEEP SEARCHES IN SUB-eV range

F.Gatti, Fri 24th, July 2015

LTD16 Grenoble

Mass measurement with cryogenic µ-calorimeter

LTD16 Grenoble

- KATRIN was the only proposal based on proved technology
- MARE was proposed as very ambitious project later after the R&D of MANU and MIbeta projects
- Now HOLMES, ECHo, NuMEX(LANL) point to a realistic goal in the sub eV range
- Project8 is a very promising technique beyond KATRIN

Grenoble

TD16

General Conclusion

- Neutrino properties can be successfully investigated with LTDs, but experiments are becoming more and more complex and large
- In most cases LTDs are unique tools and more young researchers should join the community.

