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Neutrino Mass from 163Ho Electron-Capture Events

163Dy de-excitation spectrum endpoint Q = 2.8 keV increases the
challenge (relative to Q = 2.5 keV)

• HOLMES target event rate: 300 / s / detector

• Yields 2 × 10−4 / s / detector, energy interval [2.70, 2.82] keV

• Energies near Q dominated by pile-ups over single events

• Detection and rejection of most pile-ups crucial for experiment
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163Dy De-Excitation Energy Spectrum
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163Dy De-Excitation Energy Spectrum
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163Dy De-Excitation Energy Spectrum

0 1000 2000 3000 4000 5000
energy (eV)

10-12

10-11
10-10

10-9

10-8

10-7
10-6

10-5

10-4
10-3

10-2

10-1

pr
ob

ab
ili

ty
 d

en
si

ty
 (1

/e
V)

Pile-up (self-convolution) spectrum scaled for 1 µs time resolution
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163Dy De-Excitation Energy Spectrum
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Inset: energies near Q with m(νe) = 0.0 eV (blue), 1.0 eV (red)
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Detector Dynamics and Noise Model for Simulation
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Irwin-Hilton (2005) TES noise model and detector dynamics model

C
dT

dt
= −k · (T n − Tbath

n) + I 2R(T , I ) +
∑
i

δ (t − ti ) · Ei

L
dI

dt
= V − I · RL − I · R(T , I )

enhanced with Shank et al. (2014) model for transition resistance

R(T , I ) =
RN

2

[
1 + tanh

(
T − Tc + (I/A)2/3

2ln(2)Tw

)]
.
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Neutrino Mass from 163Ho Electron-Capture Events
Construction of model—from noisy data—for single-pulse records

1 Training data: separate single- from double-pulse records
• Propose increased single-pulse count near Q with switchable

source: Lα x-ray lines of Ru (2.688 keV), Pd (2.839 keV)
• Detect pile-ups as outliers, with SVD

C. deVries et al. (2012), “Calibration sources ... ASTRO-H”:

2 Use singular value decomposition (SVD) to build model of
single-pulse records

• Pre-trigger mean, pulse amplitude, pulse arrival time are
independent factors; latter two extracted as singular vectors

• Simulations neglect additional factors, such as rising-edge
readout distortions
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Training Data with Switchable Source
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• Less than 1 Ru, Pd x-ray photon / s / detector

• Strong majority of records contain single pulses, before,

• and almost all single pulses, after outlier detection
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Training Data: Processing to Remove Outliers

Iterate

• Form matrix M: columns are noise-whitened pulse records

• Compute SVD M = UDV t , retaining first j = 6 columns of U

• Subtract means of first j columns of V , obtaining V̂

• Empirical covariance σ̂2 = V̂ tV̂ computed

• Compute squared deviation di
2 = V̂i ,:

(
σ̂2
)−1

V̂ t
i ,:, each record

• Discard records with largest di
2

three times, discarding 1/2, 1/4, 1/8 expected number of pile-ups

Single-pulse records now predominate
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Training Data with Switchable Source
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• Less pile-up at higher sample rates, and
• Less pile-up with faster pulse rise, but
• After outlier detection these differences are largely reduced
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Building Model of Single-Pulse Records

• Again M: columns are noise-whitened culled training records

• Compute SVD M = UDV t , retaining first j = 6 columns of U

• First j expansion coefficients (VD)i ,: for record i combined
with pre-trigger mean

• First column of U approximates the average pulse, while
second is dominated by the effect of arrival time on pulse
shape

• Remaining j − 2 basis vectors encode variations due to
changing baseline and nonlinear effects of varying pulse height

We approximate coefficients 3, . . . , j by linear regression from
1, x , y , z , xy , yz , zx , xyz , where x , y , z denote the pre-trigger mean
and the first two coefficients.

From the regression coefficients, residual for any record is obtained.
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Pulse Record Singular Vectors and Coefficients

sing. vec. 1

sing. vec. 2

sing. vec. 3

sing. vec. 4

sing. vec. 5

-0.1 0.0 0.1 0.2 0.3 0.4

time from arrival (ms)

sing. vec. 6

coef. 4 vs. coef. 1

coef. 3 vs. pre-trig. mean

coef. 3 vs. coef. 4

coef. 6 vs. coef. 2

13 / 20



Performance of Pile-Up Detection
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• Simulation’s pile-up detection close to optimal—noiseless
case—determined by sample rate

• Pulse rise time (i.e., detector inductance) has minor effect
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Example of Classifier Performance
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For 0.5 MHz sample rate and τ = 4.8 µs, 5 pre- and post-trigger
samples of 50 single-pulse records (left) and 50 piled-up records
(right), classified as single-pulse (blue) or as piled-up (red).
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Cost of Pile-Up Detection

Cost of detection dominated by j = 6 inner products of singular
vectors with pulse records

Comparable in cost to optimal filtering: 5 inner products with
translates of optimal filter
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Preliminary Detector Fabrication

• Foregoing simulations were based on response of modeled
detector with anticipated parameter choices

• Newer understanding, including changes in detector-absorber
layout, multiplexing, and readout, have shifted detector
parameter choices toward slower rise and longer duration
pulses

• Does time resolution remain insensitive to these effects?
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Old and New Detector Models
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• Pulse durations roughly double

• Rise times roughly quadruple

• Latter causes deterioration in time resolution
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Performance of Pile-Up Detection: Augmented
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• Longer pulse rise times have larger effect on time resolution
than shorter rise times simulated initially

• Loss of significance of sub-sample arrival time, for fast
sampling rates and slow pulse rises, reveals detection
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Summary

New algorithms

• Separate minority of pile-ups in training data as outliers

• Build single-pulse model by regression of SVD coefficients

Developed for TES microcalorimeters, but not limited to them

Simulations show

• Near-optimal time resolution, determined by sample rate, for
fairly rapid pulse rises, but

• Time resolution deteriorates with relatively long pulse rise
times
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