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Neutrino Mass from 1®3Ho Electron-Capture Events

163Dy de-excitation spectrum endpoint Q = 2.8 keV increases the
challenge (relative to Q = 2.5 keV)

o HOLMES target event rate: 300 / s / detector
e Yields 2 x 107* / s / detector, energy interval [2.70,2.82] keV
e Energies near Q dominated by pile-ups over single events

e Detection and rejection of most pile-ups crucial for experiment
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163Dy De-Excitation Energy Spectrum
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163Dy De-Excitation Energy Spectrum
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163Dy De-Excitation Energy Spectrum
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Pile-up (self-convolution) spectrum scaled for 1 ys time resolution
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163Dy De-Excitation Energy Spectrum
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Inset: energies near Q with m(v.) = 0.0 eV (blue), 1.0 eV (red)
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Detector Dynamics and Noise Model for Simulation
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[rwin-Hilton (2005) TES noise model and detector dynamics model
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enhanced with Shank et al. (2014) model for transition resistance
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Neutrino Mass from 1®3Ho Electron-Capture Events
Construction of model—from noisy data—for single-pulse records

1 Training data: separate single- from double-pulse records

e Propose increased single-pulse count near @ with switchable
source: La x-ray lines of Ru (2.688 keV), Pd (2.839 keV)
e Detect pile-ups as outliers, with SVD

C. deVries et al. (2012), “Calibration sources ... ASTRO-H":

2 Use singular value decomposition (SVD) to build model of
single-pulse records
o Pre-trigger mean, pulse amplitude, pulse arrival time are
independent factors; latter two extracted as singular vectors
e Simulations neglect additional factors, such as rising-edge
readout distortions
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Training Data with Switchable Source
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e Less than 1 Ru, Pd x-ray photon / s / detector
e Strong majority of records contain single pulses, before,
e and almost all single pulses, after outlier detection
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Training Data: Processing to Remove Outliers

Iterate
e Form matrix M: columns are noise-whitened pulse records
Compute SVD M = UDV?, retaining first j = 6 columns of U

Subtract means of first j columns of V, obtaining V

e Empirical covariance 62 = vty computed

. ~ Aoy —1 A
e Compute squared deviation di? = V. (02) \/,-t:, each record
e Discard records with largest d;?

three times, discarding 1/2, 1/4, 1/8 expected number of pile-ups

Single-pulse records now predominate
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Training Data with Switchable Source

Jraining record pile-ups, with outlier detection
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o Less pile-up at higher sample rates, and
e Less pile-up with faster pulse rise, but
o After outlier detection these differences are largely reduced
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Building Model of Single-Pulse Records

e Again M: columns are noise-whitened culled training records
e Compute SVD M = UDV?, retaining first j = 6 columns of U

e First j expansion coefficients (VD); . for record i combined
with pre-trigger mean

e First column of U approximates the average pulse, while
second is dominated by the effect of arrival time on pulse
shape

e Remaining j — 2 basis vectors encode variations due to
changing baseline and nonlinear effects of varying pulse height

We approximate coefficients 3, ..., by linear regression from
1.x,y,z,xy,yz,zx, xyz, where x, y, z denote the pre-trigger mean
and the first two coefficients.

From the regression coefficients, residual for any record is obtained.
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Pulse Record Singular Vectors and Coefficients
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Performance of Pile-Up Detection

Simulation result
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e Simulation’s pile-up detection close to optimal—noiseless
case—determined by sample rate
e Pulse rise time (i.e., detector inductance) has minor effect
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Example of Classifier Performance
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For 0.5 MHz sample rate and 7 = 4.8 us, 5 pre- and post-trigger
samples of 50 single-pulse records (left) and 50 piled-up records

(right), classified as single-pulse (blue) or as piled-up (red).
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Cost of Pile-Up Detection

Cost of detection dominated by j = 6 inner products of singular
vectors with pulse records

Comparable in cost to optimal filtering: 5 inner products with
translates of optimal filter
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Preliminary Detector Fabrication

e Foregoing simulations were based on response of modeled
detector with anticipated parameter choices

e Newer understanding, including changes in detector-absorber
layout, multiplexing, and readout, have shifted detector
parameter choices toward slower rise and longer duration
pulses

e Does time resolution remain insensitive to these effects?
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Old and New Detector Models

TES current drop (uA)

25|

20

15]

10

Pulse @ 2.8 keV (inset: rising edge)
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e Pulse durations roughly double

e Rise times roughly quadruple

e Latter causes deterioration in time resolution
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Performance of Pile-Up Detection: Augmented

Augmented simulation result
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e Longer pulse rise times have larger effect on time resolution
than shorter rise times simulated initially
e Loss of significance of sub-sample arrival time, for fast
sampling rates and slow pulse rises, reveals detection
procedure limitation 19 / 20



Summary

New algorithms
e Separate minority of pile-ups in training data as outliers
e Build single-pulse model by regression of SVD coefficients

Developed for TES microcalorimeters, but not limited to them

Simulations show

e Near-optimal time resolution, determined by sample rate, for
fairly rapid pulse rises, but

e Time resolution deteriorates with relatively long pulse rise
times
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