

Superconducting detectors for neutrino mass measurement

Marco Faverzani

Università di Milano-Bicocca and INFN - sezione Milano-Bicocca on behalf of the **HOLMES** collaboration

2th EUropean Conference on Applied Superconductivity 6th - 10th September 2015 Lyon - France

Direct calorimetric neutrino mass measurement

 163 Ho + e⁻ \rightarrow 163 Dy^{*}+v_e

¹⁶³Ho decay via EC from shell \geq M1, with Q_{EC} \sim 2.8keV

Proposed by A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

•calorimetric measurement of the Dy atomic de-excitation (mostly non-radiative)

•rate at the end point depends on the Q value ($Q_{EC} \sim 2.8$ keV) and proximity to M1 resonance line enhances the statistics at the end point (i.e. sensitivity on m_v)

 $\bullet\tau_{1/2} \simeq 4570$ years: few nuclei are needed

The HOLMES collaboration

Univ. Milano-Bicocca INFN Milano-Bicocca

C.Brofferio G.Ceruti M.Faverzani E.Ferri A.Giachero M.Maino A.Nucciotti G.Pessina A.Puiu S.Ragazzi M.Sisti F.Terranova INFN Genova M.Biasotti V.Ceriale D.Corsini M.De Gerone E.Fumagalli F.Gatti A.Orlando L.Parodi G.Pizzigoni F.Siccardi

INFN Roma M.Lusignoli

INFN LNGS S.Nisi

NIST **B.Alpert** D.Becker **D**.Bennett J.Fowler J.Gard J.Hays-Wehle G.Hilton J.Mates C.Reintsema D.Schmidt D.Swetz J.Ullom L.Vale

PSI R.Dressler S.Heinitz D.Schumann

CENTRA-IST M.Ribeiro-Gomes

Caltech/JPL P.K.Day

ILL U.Koester

- > Neutrino mass determination with a sensitivity as low as \sim 0.4 eV (baseline)
- calorimetric EC measurement
- assess of systematics
- Detectors: Mo/Cu bilayer Transition Edge Sensors (TES) with ¹⁶³Ho implanted absorbers
 - 6.5x10¹³ nuclei/pixel =
 300 dec/sec
 - $\blacktriangleright \Delta E \approx 1 \text{ eV}$, $\tau_R \approx 1 \mu s$
- two steps:
 - 16 channels mid-term prototype, t_M=1 month
 - full scale: 1000 channels, t_M=3 years

```
    6.5x10<sup>16 163</sup>Ho nuclei (≈18µg)
    3x10<sup>13</sup> events
```


complex pile up spectrum:

Marco Faverzani - EUCAS 2015, Sept. 9th 2015

Statistical sensitivity from MC simulations

TESs for HOLMES (NIST @ Boulder, CO + Genova)

design compatible with ion implanting

absorber made of gold and bismuth thermally coupled to the sensor

fast detectors

- \succ rise time determined by electrical cut-off (L/R) \rightarrow small L
- → decay time set by C/G. Constrains on C (the absorber must contain all the energy: 2 μ m of gold stop 99.99998% of the electrons) → large G

- large number of detectors multiplexed
 - microwave multiplexing

Microwave multiplexing

DC TESs read with microwave multiplexing technique

- each sensor inductively coupled to a RF-squid part of a LC resonant circuit
- a comb of signals probe the resonators at their characteristic resonant frequency

$$E \longrightarrow \delta T_{\text{TES}} \longrightarrow \delta I_{\text{TES}} \longrightarrow \delta \phi_{\text{squid}} \longrightarrow \delta f_{\text{resonator}}$$

• a ramp signal added to the squids in order to linearize the response

ROACH2 readout

- Readout made with the open system ROACH2 (by Casper collaboration)
- data processed by Xilinx FPGA
- available bandwidth 550 MHz
- signals from detectors obtained with homodyne technique
- ~ 150 TB in 3 years (with threshold @ 2.022 keV; 20 TB/day without threshold)

- ROACH2 fw (real time)
 - pulse reconstruction
 - threshold cut
- Server (quasi-real time)
 - > OF analysis (*n*-tuple)
 - pile-up detection

Bandwidth and mux factor

- \blacktriangleright effective sample rate f_s set by the frequency of the ramp signal f_r
- \succ constrain on resonator bandwidth $\Delta f_{res} \ge 2f_s n_{\phi_0}$
- \blacktriangleright constrain to avoid cross talk $f_n \ge 5\Delta f_{res}$
- > sampling faster than rise time $f_s \ge 5/\tau_r$
- > multiplex factor $n_{mux} = f_{adc}/f_n \approx f_{adc} \tau_r / 50 n_{\phi_n}$

```
n_{\phi_0}=number of flux quanta/ramp
f_n=spacing between tones
\tau_r=rise time of the pulses
f_{adc}=550MHz (ROACH2)
```

currently the number n_{ϕ_0} is 3 pushable to 2, feasible 1.1

with a rise time of 5µs

20/30 ROACH2 boards needed for 1000 detectors

Single channel test @ Milano-Bicocca (not HOLMES TESs)

Marco Faverzani - EUCAS 2015, Sept. 9th 2015

Single channel test @ Milano-Bicocca (not HOLMES TESs)

An alternative for the future: MKIDs

Pair breaking detector $hv > 2\Delta$ (~meV)

- breaking of the Cooper pairs
- quasi-particle creation $N_{\rm qp} \sim hv/\Delta$
- change in complex surface impedance $Z_s = R_s + j\omega L_s (L_s = L_k + L_g)$

 $-\frac{\alpha}{2}\frac{\delta L_s}{L_s}$

Ti/TiN multilayer produced at FBK \longrightarrow high sensitivity, "low" critical temperature (~ 1K)

Next devices

<u>TESs:</u>

- ✓ identified pulses of the test source (⁵⁵Fe)
- ✓ load curves
- ✓ new, fast, ADC procured and being installed for the one channel setup
- test of the "side-car" geometry (two-body effects?)
- implantation of the Ho
- setting up of the ROACH2 firmware
- ▶ ...

MKIDs:

- ✓ observed pulses from the test sources (⁵⁵Fe + Al K_{α})
- ✓ great S/N
- not resolving detectors so far (direct absorption)
- possibly identified problems
- devices with Ta absorbers to complete and test

Backup – tests @ NIST

150MBq of ¹⁶³Ho required for HOLMES

¹⁶² Er(n,γ) ¹⁶³ Er	σ _{thermal} ≈20b
163 Er $\longrightarrow ^{163}$ Ho+ v_e	t½ ^{EC} ≈75min

- \succ uncertainty on σ s
- ILL reactor @ Grenoble: thermal n flux 1.3x10¹⁵ n/cm²/s
- ≈270 kBq(¹⁶³Ho)/mg(¹⁶²Er)/week @ ILL (→ 80mg(¹⁶²Er) for 7 weeks → ≈150MBq of ¹⁶³Ho)
- > cross section burn up 163 Ho(n, γ) 164 Ho: not known. Possibility of degradation of yield
- \succ ¹⁶⁵Ho(n,γ) (mostly from ¹⁶⁴Er(n,^g)) → ^{166mHo}, β τ_{1/2}=1200y
- chemical pre-purification and post-separation at PSI (Villigen, Switzerland)
- irradiated and processed samples are under investigation with ICP-MS
- > 150mg of enriched Er_2O_3 are @ ILL since 2014 (56 days $\rightarrow \approx 70-80MBq$)

Backup – Ho implantation

- 2 μm thick Au encapsulating implanted
 ¹⁶³Ho
- TES fabricated at NIST, Boulder, CO, USA
- ¹⁶³Ho implantation and Si₂N₃ membrane release at INFN Genova

