Advances in holmium-based neutrino mass experiments

Angelo Nucciotti

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

International School of Nuclear Physics - 43rd Course Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice, Sicily - September 16-22, 2022

Outline

- direct neutrino mass measurements
- calorimetric measurements with low temperature detectors
- low *Q* beta decay experiments
- ¹⁶³Ho EC decay calorimetric experiments
 - decay spectrum
 - statistical sensitivity
- HOLMES and ECHo experiments
 - detectors
 - isotope production and embedding
 - arrays readout, data acquisition and processing
 - present results
- future of holmium based experiments

Neutrino properties

neutrinos are massive fermions

Neutrino open questions

- mass scale: i.e. mass of the lightest ν
- degenerate $(m_1 \approx m_2 \approx m_3)$ or hierarchical masses
 - ▶ mass hierarchy: $m_1 < m_2 \ll m_3$ or $m_3 \ll m_1 \approx m_2$?
- $v = \overline{v}$? i.e. Dirac or Majorana particle?
- CP violation in the lepton sector

Direct v mass measurements: the status

three complementary	y tools available	e v = v n n n n	n n v reutino 3H e electron 3He p electron 3He p electron
tool	Cosmology CMB+LSS+	Neutrinoless Double Beta decay	Beta decay end-point
observable	<i>m</i> Σ=Σk <i>m</i> ν _k	$m_{\beta\beta} = \sum_k m_{\nu_k} U_{ek}^2 $	$m_{\beta} = (\sum_{k} m_{\nu_{k}}^{2} U_{ek} ^{2})^{1/2}$
present sensitivity	≈0.1 eV	≈0.1 eV	≈1 eV
≈10y future sensitivity	≈0.05 eV	≈0.01 eV	≈0.1 eV
model dependency	yes 🕲	yes 😕	no 🕲
systematics	large 😕	some 🕲	large 😕

Direct neutrino mass measurements

kinematics of weak decays

- ▶ in beta and electron capture decays where $\overline{\mathbf{v}}_{e}$ or \mathbf{v}_{e} are emitted $|\mathbf{v}_{e}\rangle = \sum_{k} U_{ek} |\mathbf{v}_{k}\rangle$
- ▶ non zero neutrino masses $m_{\nu k}$ modify the phase space
- ► for nuclear β decay $N(E) \propto p_{\beta} E_{\beta}(Q E_{\beta}) \sum_{k} |U_{ek}|^2 \sqrt{(Q E_{\beta})^2 m_{v_k}^2} F(Z, E_{\beta}) S(E_{\beta})$

• for degenerate masses $(m_{\nu 1} \approx m_{\nu 2} \approx m_{\nu 3})$

 $N(E) \approx p_{\beta} E_{\beta} (Q - E_{\beta}) \sqrt{(Q - E_{\beta})^2 - m_{\beta}^2} F(Z, E_{\beta}) S(E_{\beta}) \quad \text{with} \quad m_{\beta} = \sqrt{\sum_{k} m_{\nu_{k}}^2 |U_{ek}|^2}$

Tritium experiments

KATRIN Nat. Phys. 18, 160–166 (2022) Lokhov + Schwemmer on Wed Sep 21

- MAC-E filter: ultimate integral spectrometer experiment
- sensitivity goal: 0.2 eV 90% CL
- energy resolution <3 eV @18 keV.
- first high-purity tritium campaign in 2019
 - → *m*_ν < **0.8 eV** 90% CL

Project8 arXiv:2203.07349

- Cyclotron Resonance Electron Spectrometry (CRES)
- sensitivity goal: 40 meV 90% CL
- 4 different experimental phases: phase III ongoing
- energy resolution \approx 2 eV @18 keV

PTOLEMY M.G. Betti et al., Prog. Part. Nucl. Phys, 106 (2019)

- project to measure the Cosmic Neutrino Background via neutrino capture on tritium
- differential spectrometer combining CRES with an EM dynamic filter and hi-res microcalorimeters
- sensitivity potential: O(10) meV
- presently: small prototype R&D

Direct v mass measurements: 2022 status

Direct v mass measurements: role of kinematic exp.

Calorimetric experiments

ideal calorimetric experiment

- radioactive source embedded in the detector(s)
- only the neutrino energy escapes detection
- $\rightarrow \boldsymbol{E}_{c} = \boldsymbol{Q} \boldsymbol{E}_{v}$
- no backscattering
- no energy losses in source
- no decay final state effects
- no solid state excitation
- low activity \rightarrow limited statistics
- pile-up background

ideal isotope has

- low *Q*
 - \rightarrow larger fraction of decays in ROI
 - → easier calorimetry
- for EC: capture peak close to end-point
- short decay time

isotope	Q [eV]	τ _{1/2} [y]	decay	B.R.	experiments	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
³ Н	18592.01(7)	12	β-	1	Simpsons's	0.64 ns = 0.221
¹⁸⁷ Re	2470.9(13)	4.3×10 ¹⁰	β-	1	MANU, MIBETA	
¹⁶³ Ho	2833(30)	4570	EC	1	Holmes, ECHo	
¹³⁵ Cs	440	8.0×10^{11}	β-	1.6×10 ⁻⁶	-	
¹¹⁵ In	155	4.3×10 ²⁰	β-	1.1×10 ⁻⁶	-	А. de Roubin et al. PRL. 124. 222503 (2020)

Low temperature detector principles

energy resolution limited by thermodynamic fluctuation noise TFN

$$V_{ph} = \frac{\langle U \rangle}{\langle E_{ph} \rangle} = \frac{CT}{k_B T}$$

$$\sigma_E = \Delta U_{rms} = \sqrt{N_{ph}} \langle E_{ph} \rangle = \sqrt{k_B T^2 C}$$

- detectors used for calorimetric neutrino mass experiments are more complex
- \bullet in metallic calorimeters energy is transferred to electronic system with ${\cal T}_{\rm e}$
- thermodinamycs and statistical mechanics still provide for TFN $\sigma_E = \sqrt{k_B T^2 C}$

200×200×2 μm³ (1.5 μg) Au absorber @ 100 mK

 $C \approx C_{\rm e} \propto T_{\rm e} \rightarrow C \approx 5 \times 10^{-13} \, \text{J/K}$

 $\sigma_{E} \approx 3.4 \text{ eV}$ (better estimate for TES detectors gives $\sigma_{E} \approx 0.4 \text{ eV}$)

Pile-up in low temperature detectors

- calorimeters detect all β source decays
- low temperature detectors are *slow* devices
- simple pulse model $A(t) = A(e^{-t/\tau_{decay}} e^{-t/\tau_{rise}})$
 - for microcalorimeters: $\tau_{rise} \approx 0.1-10 \ \mu s$ and $\tau_{decay} \approx 0.1-10 \ m s$

• $\Delta t \gg \tau_{rise} \rightarrow pile-up$ on the decay time \rightarrow dead time

• $\Delta t \leq \tau_{rise} \rightarrow pile-up$ on the rise time \rightarrow spectral distortions and background

Calorimetry of beta decays: statistical sensitivity

first ¹⁸⁷Re experiments: $N_{ev} \approx 10^7$ events

MIBETA @ Milano with AgReO₄

- → m_v < 15 eV 90% C.L. M.Sisti et al., NIM A 520 (2004) 125
- MANU @ Genova with metallic Re

→ *m* < 26 eV 95% C.L. F.Gatti et al., Nucl. Phys. B91 (2001) 293

1990 → **2006** MIBETA (Milano/MilanoBicocca) + MANU (Genova)

¹⁸⁷**Re** → *m*_v<15 eV (+ BEFS...)

2006 MARE (Microcalorimeter Array for a Rhenium Experiment) int'l project for *m* <0.1 eV

2007 \rightarrow **2013** MARE R&D for phase 1 \rightarrow Re+TES/MMC / AgReO₄+Si-Impl

2013 MARE project with ¹⁸⁷Re abandoned due to insurmountable technical obstacles

A. Nucciotti, Adv. High Energy Phys. 2016, 9153024 (2016)

Electron capture calorimetric experiments

 163 Ho → 163 Dy[H] + v_e 163 Dy[H] → 163 Dy + E_c

shell binding energy: $E_b(M1)=2.05 \text{ keV}$ \rightarrow electron capture from shell $\ge M1$ \rightarrow H=M1, M2, N1, N2, O1, O2, P1 $\Gamma_{M1}\approx 13 \text{ eV}$

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (E_c)
 - ▷ mostly Auger and Coster-Kronig ($\omega_{M1,2} \approx 10^{-3}$, $\omega_{N1,2} \approx 10^{-5}$)
 - Q=2.833±0.030^{stat}±0.015^{sys} keV
 - S. Eliseev et al., Phys. Rev. Lett. 115 (2015) 062501
 - end-point rate and v mass sensitivity depend on $Q-E_{M1}$

•
$$\tau_{_{1/2}} \approx 4570$$
 years $\rightarrow 2 \times 10^{11}$ ¹⁶³Ho nuclei $\leftrightarrow 1$ Bq

Pile-up in ¹⁶³Ho EC calorimetric experiments / 2

- accidental coincidences → complex pile-up spectrum
- calorimetric measurement → **detector speed is critical**

 A_{EC} EC activity per detector T_{R} time resolution (\approx rise time)

 $> N_{pp}(E) = \mathbf{f}_{pp} N_{EC}(E) \otimes N_{EC}(E) \text{ with } \mathbf{f}_{pp} \approx \mathbf{A}_{EC} \mathbf{T}_{R}$

A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022 16

Double hole processes / 1

- high-statistic low background ECHo spectrum shows extra features
 - extra peaks close to N1 and M1
 - N/M peak asymmetries / high energy tails

 X_1

X₂

Ho

H₁

H₂

Single hole: the Dy atom is left by EC with one hole in the shell (M, N, O...)

 \rightarrow for H₁ in shell X₁ with binding energy $E_b(X_1) \rightarrow$ resonance for $E_c = E_b(X_1)$

Double hole processes

the perturbation due to the nuclues charge change (Ho \rightarrow Dy) "shakens" one or more additional atomic electron to an upper bound state (shake-up) or to the continuum (shake-off or Auger)

- \rightarrow shake up: additional hole H₂ in X₂ \rightarrow resonance for $E_c = E_b(X_1) + E_b(X_2)$
- \rightarrow shake off: additional hole H₂ in X₂

 \rightarrow tail to peaks from $E_c = E_b(X_1) + E_b(X_2)$ up to $E_c = Q$

Double hole processes / 2

- several attempts to include double hole processes
 H. Robertson et al., A. Faessler et al., A. De Rújula and M. Lusignoli, ...
- recent work from M. Haverkort and collaborators: *ab-initio* calculations including Coulomb interactions between multi core bound and unbound states (work in progress)
 - missing because of computational limits: intrinsic resonance linewidths,

full shake-off contributions, radiative transitions, ...

J. High Energ. Phys. (2016) 2016: 15

End-point spectral shape

- "bare" spectra (without phase space)
- *ab-initio* with additional Lorentzian broadening
- spectra are normalized to unity
 - end-point region is smooth and featureless
 - phase space factor leaves unmistakable imprint
 - \rightarrow possibly small systematic uncertainties
 - \rightarrow to be proved

- apparently *ab-initio* spectrum has higher rate at endpoint
- also pup spectrum is higher
 - \rightarrow small gain on statistical sensitivity

Statistical sensitivity: pile-up and energy resolution

- Montecarlo simulations for statistical sensitivity with single-hole spectrum
- simulations confirm that sensitivity Σ scales as $1/(N_{\rm ev})^{0.25}$

A. Nucciotti, Eur. Phys. J. C 74.11 (2014)

Neutrino mass statistical sensitivity

 $A_{\rm EC}$ =300 Bq $\rightarrow b < \approx 0.1$ counts/eV/day/det

Low energy background

- pile-up in ROI (single-hole) b_{pp}≈0.35 f_{pp} A c/eV/day
- environmental γ radiation
- γ , X and β from close surroundings
- cosmic rays

▷ GEANT4 (HOLMES) $\rightarrow b_{CR} \approx 10^{-5} \text{ c/eV/day/det} (0 - 4 \text{ keV})$

- internal radionuclides
- ▷ GEANT4 (HOLMES) → $b_{CR} \approx 10^{-5}$ c/eV/day/det (0 4 keV)
 internal radionuclides
 ▷ ^{166m}Ho (β⁻, Q=1.8 MeV, τ_{1/2}=1200 y)
 ▷ co-produced with ¹⁶³Ho: A(¹⁶³Ho)/A(^{166m}Ho)>500 (HOLMES)
- ▷ GEANT4 (HOLMES) $\rightarrow b_{166m} \approx 0.3 \text{ c/eV/day/det/Bq(}^{166m}\text{Ho}\text{)}$

[‡] from MC simulations

cosmic rays

A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022

Effect of flat background on sensitivity

expected from simulations and preliminary HOLMES and ECHo measurements

A. Goeggelmann et al., EPJ.C 81 (2021) 363

A. Goeggelmann et al., EPJ.C 82 (2022) 139

The ECHo experiment

Arrays of Magnetic Metallic Calorimeters with ion-implanted ¹⁶³Ho

ECHo-1k

- number of detectors: 60~100 pixels
- activity: 1~5 Bq/pixel
- read-out: two-stage dc-SQUID
- energy resolution: $\Delta E_{\text{FWHM}} < 10 \text{ eV}$

L. Gastaldo et al. Eur. Phys. J. Special Topics 226, 1623 (2017) **ECHo**

ECHo-100k

- number of detectors: 12000 pixels
- activity: 10 Bq/pixel
- read-out: microwave multiplexing
- energy resolution: $\Delta E_{\text{FWHM}} < 5 \text{ eV}$

$\rightarrow m_{\nu}$ statistical sensitivity <1.5 eV

Metallic Magnetic sensors

- paramagnetic temperature sensor
- **Ag:Er**, Au:Er ...
- no power dissipation in the sensor no Johnson noise
- SQUID read-out \rightarrow multiplexing for arrays
- large operating temperature range 10 100 mK
 - ECHo operates at $T \approx 30 \text{ mK}$
- strong spin-electron coupling \rightarrow fast rise time (\approx 100 ns)

The HOLMES experiment

- Transitione Edge Sensors (TES) microcalorimeters with ion-implanted ¹⁶³Ho
- 6.5×10^{13} atom/det $\rightarrow A_{\rm EC} = 300$ c/s/det
- $\Delta E \approx 1 \text{ eV}$ and $\tau_{R} \approx 1 \text{ } \mu \text{s}$
- 1000 TES microcalorimeters
- 16 × 64-pixel arrays with microwave multiplexed read-out
- $6.5 \times 10^{16} \, {}^{163}$ Ho nuclei $\rightarrow \approx 18 \, \mu g$ $\rightarrow 3 \times 10^{13}$ events in 3 years
 - $\rightarrow m_{\nu}$ statistical sensitivity $\approx 1 \text{ eV}$

exposure $N_{det} t_M = 1000 det \times 3 y$ s/det 30 c/s/det 100 c/s/det 300 c

26

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112

MES

Superconducting transition edge sensors (TES)

A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022

Microcalorimeters arrays

ECHo-1k

72 pixels

KOH micromachining

Isotope production

¹⁶²Er (n, γ) ¹⁶³Er $\sigma_{\text{thermal}} \approx 20 \text{ b}$ ¹⁶³Er \rightarrow ¹⁶³Ho + ν_{e} $\tau_{\frac{1}{1/2}} \approx 75 \text{ min}$

- ¹⁶²Er irradiation at ILL nuclear reactor (Grenoble, France)
 - ► thermal neutron flux 1.3×10¹⁵ n/cm²/s
- Ho chemical separation with ion-exchange resins in hot-cell to remove Er matrix and and radioactive products
- separation efficiency >90 %
- HOLMES has collected ≈ 200 MBq of ¹⁶³Ho (+ ≈ 400 kBq of ^{166m}Ho)

H. Dorrer et al., Radiochim. Acta, 106 (2018) 535 S. Heinitz et al., PLoS ONE 13(8): e0200910

Mass separation and isotope embedding

^{166m}Ho must be separated by magnetic mass spectrometer requires high current, high source and geometrical efficiency

ECHo: resonant ionization laser ion source (RILIS)

- RISIKO at Mainz University
- efficiency: (69 ± 5stat ± 4syst) %
- 166m Ho/ 163 Ho < 4(2)10-9

T. Kieck et al., NIM A, 945, 2019, 162602.

HOLMES: Ar plasma sputter ion source

- all components ready for installation in Genova
- now testing without triplet/XY-scan and chamber
- high current ion source optimization in progress

RISIKO for ECHo

Resonant laser ionization

HOLMES ion implanter progresses

- high current sputter source
- several sputter targets tested
- sintered Zr-Y-Al-Ho(NO₃)₃
 - \rightarrow highest effieciency, current and stability

target

Detector absorbers for calorimetry

- Au absorber must stop all radiation from atomic de-excitations with $E_c \approx Q$
 - for $H=M1 \rightarrow 3-4$ Auger/C-K electrons carry most of E_c (the most energetic with $\langle E_e \rangle \approx 2$ keV)
 - for H=M1 \rightarrow rarely ($\omega_M \approx 10^{-3}$) one X with $\langle E_X \rangle \approx 2.5$ keV and low energy electrons
 - shake-off electrons have energies mostly $\leq 800 \text{ eV}$

ECHo design

HOLMES co-deposition system

Implanted Ho heat capacity

• optimal ΔE depends on C and T

 $\Delta E \propto T \sqrt{C}$ $C = C_a + C_{\rm Ho}$

- Ho heat capacity C_{Ho} dominated by a Schottky anomaly at $\approx 300 \text{ mK}$
 - J=8 and $I=7/2 \rightarrow$ hyperfine and crystal field splittings
- contradictory *C* measurements for Ag:Ho
 - still under investigation
- high activities could be manageable
 - operating at 30 mK or below
 - $A=300 \text{ Bq} \rightarrow x_{Ho}>10 \% \rightarrow \text{closer to bulk } C$
 - to be explored by HOLMES

Herbst, M. et al., J Low Temp Phys 202, 106-120 (2021)

ECHo-1k read-out

72 read-out channels for ECHo-1k

10 wires/channel to room temperature \rightarrow 720 wires from low to room temperature \rightarrow not viable for \geq 1000 channels ...

F. Mantegazzini et al. JINST16 (2021) P08003

parallel SQUID read-out 1 SQUID channel for 2 pixels

Microwave multiplexing for array read-out

microwave multiplexing to read-out many detectors with one single RF line and HEMT amplifier

Microwave mux results: HOLMES

D.T. Becker et al 2019 JINST 14 P10035

A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022

HOLMES heterodyne readout

Software Defined Radio generates RF tones and demodulates output RFsignals

A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022

ECHo-100k

ECHo-100k will implement microwave multiplexing to readout 12000 MMCs

Heidelberg University, 2022

A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022

ECHO-100k: SDR for heterodyne readout development

HEMT 4-8 GHz band covered by 5×800 MHz bands \rightarrow 80 channel/band \rightarrow 400 total channels

Data analysis

A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022 42

Pile-up discrimination

- advanced discrimination technique to identify pile-up events
 - Discrimination through Singular Vector Projections (DSVP)
 - "unsupervised learning" technique, based on singular value decomposition, PCA and multiple linear regression
 - \rightarrow SVP decomposition
 - \rightarrow raw dataset cleaning (PCA)
 - \rightarrow model point distribution in singular vector projection space

ROI energy spectrum

- with DSVP τ_R is limited by the pulse sampling time $1/f_{ramp}$
- simulations for HOLMES pulses
 - → $\tau_R \approx 1-2 \ \mu s$ for $\tau_{rise} \approx 10-20 \ \mu s$ and $f_{ramp} = 500 \ kHz$

Borghesi, M. et al. EPJ C 81, 385 (2021) A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022 43

Cryogenic set-ups

A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022 44

HOLMES (for 256 pixels)

HOLMES status: detectors, readout, analysis

raw data from 26 multiplexed detectors

⁵⁵Fe X-rays + Al, Cl, Ca X-ray fluorescence

1000

Time [µs]

2000

 $\Delta E = 4.22 \pm 0.08 \text{ eV}$

 $\Delta E_{NEP} = 4.1 \text{ eV}$

- fully processed TES arrays without ¹⁶³Ho implant
- set-up for 126 multiplexed pixels
- \bullet 2 μmux chips but only 32 bonded pixels
- 16 channel firmware version (stable) for ROACH2
- at 5.9 keV:
- $\rightarrow \Delta E_{FWHM} \approx 4-6 \text{ eV}$
- → $\tau_{rise} \approx 15 \ \mu s$ (R/L limited to match DAQ) → $\tau_R \approx 1.5 \ \mu s$
- → τ_{decay} ≈300 µs

250

200

Counts/bin 120 100

50

25

-25

5860

5870

5880

5890

Energy [eV]

5900

5910

5920 0

Res

ECHo-1k status: detectors

2 detector modules with ¹⁶³Ho in Au and Ag host material parallel dc-SQUID readout

host	¹⁶³ Ho pixels	bkg pixels	(A) [Bq]	A _{tot} [Bq]
Au	23	3	0.94	28.1
Ag	34	6	0.71	25.9

ECHo-1k status: 10⁷ events spectrum

ECHo-100k progresses

- 30 MBq of pure ¹⁶³Ho available
- implant system improvements for 10 Bq
 - beam positioning on ECHo-100k wafer
 - co-deposition through PLD in progress
- pixel design optimization to minimize C
- µmux read-out system development in progress

ECHo-100k updated expected sensitivity

HOLMES sensitivity evolution vs. pixel activity

Beyond ECHo and HOLMES: a 0.1eV experiment

10 years measuring time										
A/det [Bq]	10	10	100	100	1000	1000				
τ _R [us]	0.1	1	0.1	1	0.1	1				
f _{pp}	1.0E-06	1.0E-05	1.0E-05	1.0E-04	1.0E-04	1.0E-03				
N _{det}	3.0E+07	9.8E+07	9.8E+06	3.0E+07	3.0E+06	1.3E+07				
A total [Bq]	3.0E+08	9.8E+08	9.8E+08	3.0E+09	3.0E+09	1.3E+10				
¹⁶² Er [mg] *	2274	7429	7429	22742	22742	98548				

* 162 Er/A(163 Ho) = 3790 mg/GBq + 50% usage efficiency

- pixel activity \geq 100Bq/det \leftrightarrow ¹⁶³Ho heat capacity
- time resolution below $0.1\mu s \leftrightarrow$ multiplexing and DAQ bandwidth

Conclusions

• ECHo and HOLMES are reaching a statistical sensitivity of order of 1 eV in few years

- many technical challenges faced successfully (also separately by ECHo and HOLMES)
 - production of large amounts of clean 163Ho samples
 - efficient ion implantation
 - high resolution detectors with multiplexed read-out
 - sophisticated analysis tools
- some activities are still required to fully assess the potential of holmium experiments
 - understanding the holmium decay spectrum
 - effect of high activities on detector performances
 - investigating systematic effects

• longer term plans: next generation experiments for sub-eV sensitivities require

- larger international collaboration
- increased single pixel activity
- cost reduction (isotope production and efficient usage, readout electronics)

Collaborations

Università di Milano-Bicocca, Italy INFN Milano-Bicocca, Italy INFN Genova, Italy INFN Roma, Italy INFN LNGS, Italy NIST, Boulder, USA PSI, Villigen, Switzerland

ILL, Grenoble, France

Heidelberg University, Germany Johannes Gutenberg University, Mainz, Germany GSI. Darmstadt, Germany Helmholtz Institute Mainz, Mainz, Germany University of Tübingen, Tübingen, Germany MPI für Kernphysik, Heidelberg, Germany KIT, Karlsruhe, Germany Petersburg Nuclear Physics Institute, Gatchina, Russia Laboratoire Souterrain de Modane, Modane, France CERN, Geneva, Switzerland

ILL, Grenoble, France

backup slides...

A. Nucciotti, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022 55

Beyond HOLMES (and ECHo...)

- requires $\geq 100Bq/det$
- international collaboration starting with
 - cross-check and align sensitivity estimates
 - share theoretical spectrum
 - unified effort for isotope production
 - joint development of a dedicated ion implant facility
 - joint development of DAQ HW and FW
 - joint development of software tools
- keep detector development lines separated at the beginning
- consider a shared facility for underground measurements

Beyond HOLMES: a 0.1eV experiment

Rhenium-187: MARE project

http://crio.mib.infn.it/wig/silicini/proposal/proposal MARE v2.6.pdf A. Nucciotti et al., Astropart. Phys. 34, 80 (2010). https://doi.org/10.1016/j.astropartphys.2010.05000, Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022

Rhenium-187: MARE project

•metallic Re + MMC studies @ Heidelberg University (2007-2012)

•poor energy thermalization in superconducting Re

- 95% of the energy missing
- small pulses \rightarrow poor energy resolution
- long decay time constants

Rhenium-187: conclusions

- Re detector development \rightarrow no satisfactory results with Si/Ge thermistors, TES, MMCs... in about **20 years** of testing (1990-2010) at Standford, Genova, Milano, Heidelberg
 - no clear understanding of Re absorber physics
 - purity and superconductivity?
 - extra *C* due to nuclear quadrupole moment?
- low specific activity \rightarrow "large" masses \rightarrow fabrication issues
- possibly large systematics
 - Beta Environmental Fine Structure (BEFS)
 - detector response function
- MARE project shifted to 163 Ho \rightarrow ECHo and HOLMES

A. Nucciotti, Adv. High Energy Phys. 2016, 9153024 (2016). https://doi.org/10.1155/2016/9153024

Other beta isotopes for calorimetry

good isotope requires low Q_{exc} ($\rightarrow Q \approx E^*$), "long" half life and favorable B.R.

- Q (and Q_{exc}) have errors (O(keV) or more), B.R. not known ...
- $Q \rightarrow$ systematic measurements with traps, B.R. \rightarrow theory/measurements

hypothesis
¹⁸⁷Re shape
negligible pile-up
no background
100% enrichment

	a.i. [%]	half-life [y]	Q [keV]	B.R. (→ <i>E</i> *)	Q _{exc} [eV]	half-life (→ <i>E</i> *) [y]	N _{ev} for Σ(m_v)=0.1eV *	Mass for T_M=10y * [g]	Activity (→ <i>E</i> *) [1/s]	Activity main [1/s]
¹⁸⁷ Re	63	4.3E+10	2.47	1	2470	4.3E+10	9.5E+13	<mark>182</mark>	<mark>298258</mark>	0
¹¹⁵ In	96	4.0E+14	499	1.1E-06	155	3.7E+20	2.3E+10	2.38E+08	74	6.8E+07
¹³⁵ Cs	0	1.3E+06	270	1.6E-06	440	8.0E+11	5.3E+11	14	1686	1.0E+09
¹³⁵ Cs	0	1.3E+06	270	1.3E-05 4.3E-08	750 130	1.0E+11 3.0E+13	2.6E+12 1.4E+10	<u>9 – 13</u>	8350 – 43	<u>1.0E+09</u>

A. de Roubin et al. Phys. Rev. Nuettiol 24 N222503s (2020) mology, in Astro-, Particle- and Nuclear Physics, Erice, Sep. 16-22, 2022 61

Statistical sensitivity: shake-off processes

HOLMES simulation with the optimistic spectrum from A.De Rújula & M. Lusignoli

statistical sensitivity $\Sigma(m_v) \approx 0.64 \pm 0.03 \text{ eV}$

HOLMES ion implantation system extension

HOLMES detector design

design mostly driven by **read-out bandwith** requirements

TES microwave multiplexing with rf-SQUID ramp modulation + Software Defined Radio (SDR)

read-out specs $\begin{array}{|c|c|c|c|} \hline & signal sampling f_{samp} \\ signal rise time \tau_{rise} \end{array} \xrightarrow{\begin{tabular}{c|c|c|} HOLMES targets \\ \hline & \tau_R \Delta E N_{det} \end{array} } \end{array}$ SDR ADC **f** multiplexing factor **n**_{TES} $f_{samp} \ge \frac{\kappa_d}{\tau_{risc}} \approx \frac{5}{\tau_{risc}}$ detector signal sampling (signal BW) $f_{res} \ge 2n_{\Phi_0} f_{samp}$ flux ramp modulated signal BW \rightarrow resonator BW Δf_{BW} $\Delta f \ge g_f f_{res} = \frac{2 R_d g_f n_{\Phi_0}}{\tau} \quad \text{microwave tones separation against crosstalk } (g_f \ge 7)$ multiplexing factor $\rightarrow n_{TES} = \frac{f_{ADC}}{\Delta f} \le \frac{f_{ADC} \tau_{rise}}{2 R_A q_E n_{\Phi}} \approx \frac{f_{ADC} \tau_{rise}}{140}$

for fixed $f_{ADC} = 512MHz$ and $n_{TES} = 32 \leftrightarrow \tau_{rise} \approx 10 \mu s$ with $f_{samp} = 0.5MHz$ \rightarrow check for slew rate, τ_{R} and $\Delta E...$

HOLMES array read-out: rf-SQUID

Other beta isotopes for calorimetry

good isotope requires low Q_{exc} ($\rightarrow Q \approx E^*$), "long" half life and favorable B.R.

Q (and Q_{exc}) have errors (O(keV) or more), B.R. not known ...

 $Q \rightarrow$ systematic measurements with traps, B.R. \rightarrow theory/measurements

HOLMES background measurements

