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Electron capture end-point experiment

A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

Calorimetric measurement of atomic de-excitations
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*Neutrino mass measurement with statistical sensitivity as low as 0.4eV;

sprove technique and its scalability;
- assess EC Q value;
- assess systematic errors.

Baseline configuration

*TES with implanted ®3Ho
- 6.5x10"° nuclei per pixel
— 300 dec/sec
- AE=1eV and 1.=1pus
*1000 channels array
6.5x10'% 183Ho nuclei
— =18ug
3x10" events in 3 years



Detector development for HOLMES

« Holmes will use large transition edge sensor arrays of microcalorimeters,
readout by a microwave SQUID multiplexer.

* NIST has developed transition-edge x-ray microcalorimeters since 1990s,
with best achieved energy resolutions = 2.1 eV at 5.9 keV and 1.5 eV at
1.5 keV (FWHM).

Challenging requirements
- Fast pulse response (< 5us rise time, ~ 104 s recovery time)

* Preserve resolution (~ 1eV @ 2.5keV)
« Need to be compatible with 3Ho implantation



Holmium reduction and distillation/1

d '%Ho is not present in nature. One of the methods for production is neutron
irradiation of enriched 92Er, which is typically in oxide form = the final product

is composed mainly by both Ho and Er oxides.

O The presence of holmium oxide would modify the shape of the calorimetric
spectrum - it is necessary to purify the holmium sample through a reduction

and distillation process.

Methodology: heat a mixture of

yttrium and holmium oxide above the -
melting point. Due to different std 10
enthalpy of formation oxygen is ‘
captured by yttrium, leaving pure

metallic holmium.
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Holmium reduction and distillation/2

Setup

Vacuum chamber

First metallic holmium

Glass substrate
Type C

MetallicN
thermocouple

Ho oxide
-

G. Pizzigoni

X

Metallic Y Knudsen cell

See Poster G 2.3 for more
details

Distillation must be done in vacuum to avoid holmium vapour oxidation before condensing
onto the target - the growth of the oxide on the metal surface is monitored in realtime using a

XPS system.
The XPS analysis of the condensed material doesn’t show any yttrium contamination

Need to measure system efficiency as function of temperature!




Custom 193Ho source embedding system
(preliminary layout)
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Preliminary layout
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A modular experiment

bridge
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66 %3Ho implanted sensors / /

interface chip with bias resistors

microwave SQUID readout chip

This package can be replicated or expanded to 1024 sensors




Cross section of current pixel design
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TES parameters optimization

How to make detectors faster? * G =dP/T[WI/K]
« C = heat capacity
T dR e
- Simplified recovery time: * a=_-- temperature sensitivity

_ I dR i
= ——, current sensitivity
R dI

1=C/G+2) ~C/(G(1+2))

* E. .= CTJ/a - decreasing C and increasing « is not ideal

 Energyresolution: AE = \/4ka2€(1 + p)/«a

— best way to speed up pixels is to increase G




HOLMES pixel design

optimize design for speed and resolution

specs @2.5keV : AE v = 1€V, 1.5 Sps, Tiecay ~ 100ps (* exponential time constants)

G engineering for speed = any G from 40pW/K up to InW/K is achievable (see P1.1)
2 um Au thickness for full electron and photon absorption
> GEANT4 simulation: 99.99998% / 99.927% full stopping for 2 keV electrons / photons

define process for '*Ho implantation

163HO

L _

o tests at NIST are in progress

> from preliminary measurements model predicts:

> AE

FWHM =3 e‘f’ Trise =6 ns, Tdecayz 130 us (L =35 IlH)



HOLMES detector array fabrication

163HO

ad - Ay

« 2 um thick ' encapsulating implanted '“*Ho

. TES and first layer of Au absorber (~ 1 um )
fabricated at NIST

« '®Ho implantation, second layer Au
deposition and Si;N, membrane release at
INFN Genova
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Conclusions

HOLMES technology development is really challenging,

but it is well underway;

Distillation of metallic holmium, starting from holmium oxide,
has been demonstrated in Genoa—> needs optimization;
Custom ion implanter has been defined and purchase is almo
st finalized — it should be delivered to Genoa by end of year.
TES pixel design optimization is ongoing and it is showing
promising results.



