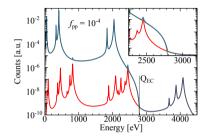

An overview of the status of HOLMES, an experiment for measuring the neutrino mass

Elena Ferri

University of Milano-Bicocca and INFN of Milano-Bicocca on behalf of HOLMES collaboration

 $^{163}\text{Ho} + e^{-} \rightarrow \ ^{163}\text{Dy}^{*} + \nu_{e}(\text{E}_{c}) \quad \text{electron capture from shell} \geqslant \text{M1}$

- Calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)


 \Rightarrow measurement of the entire energy released except the ν energy

- proposed for the first time by A. De Rujula e M. Lusignoli in 1982 Phys. Lett. 118B (1982) 429 Nucl. Phys. B219 (1983) 277-301
- rate at the end point depends on $(Q E_{M1})$: the proximity to M1 resonance peak enhances the statistics at the end point (i.e. sensitivity on m_{ν})
- Searching for a tiny deformation caused by a non-zero neutrino mass to the spectrum near its end point

Elena Ferri

$S(E_c) = \left[N_{ev}(N_{EC}(E_c, m_v) + f_{pp} \times N_{EC}(E_c, 0) \otimes N_{EC}(E_c, 0)) + B(E_c)\right] \otimes R_{\Delta E}(E_c)$

Nev	: total number of events
$N_{EC}(E_c, m_v)$: ¹⁶³ Ho spectrum
B(E)	: background energy spectrum
$R_{\Delta E}(E_c)$: detector energy response function
fpp	: fraction of pile-up events
$R_{\Delta E}(E_c)$: detector energy response function
ΔE	intervall of energy

more details on Eur. Phys. J. C 74 (2014) 3161

- Pulse pile-up occurs when multiple events arrive within the temporal resolving time of the detector
- Unresolved pile-up events close to the end-point impairing effect on the end-point measurement
- The ¹⁶³Ho pile-up events spectrum is quite complex and presents a number of peaks at the end-point
- To resolve pile-up:
 - Detector with fast signal rise-time $\tau_{\texttt{rise}}$
 - Pile-up recognition algorithm (i.e. Wiener filter, Singular Value Decomposition)

The HOLMES experiment (ERC-2013-AdG no. 340321)

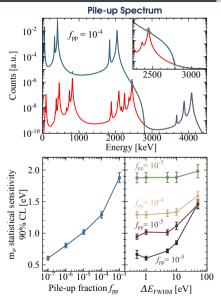
-

The m_{ν} statistical sensitivity has:

- Strong dependence on statistic: $\Sigma(m_\nu) \propto {N_{events}}^{1/4}$
- **Strong** dependence on pile-up: $f_{pp} \simeq A_{EC} \cdot \tau_{res}$

(A $_{E\ C}$: pixel activity, $\tau_{\rm res}$: time resolution)

- Weak dependence on energy resolution ΔE ;


Multiplaxable detectors with fast response are required

HOLMES

Neutrino mass determination with a sensitivity as low as $\approx 1 \text{ eV}$

- Microcalorimeters based on Transition Edge Sensors with $^{163}\mathrm{Ho}$ implanted Au absorber
- Pixel activity of $A_{E\,C} \sim 300\,$ Bq/det
- Energy resolution: O(eV)
- Time resolution: $\tau_{\rm res} \sim 3 \ \mu s$ ($\tau_{\rm rise} = 10 20 \ \mu s$);
- 1000 channels for $3\cdot 10^{13}\,$ events collected in $T_M=3\,years$

more details on Eur. Phys. J. C (2015) 75: 112

Production

¹⁶³Ho production from ¹⁶²Er neutron activation

 162 Er(n, γ) 163 Er $\sigma_{\text{therm}} \approx 20b$ 163 Er + $e^- \rightarrow^{163}$ Ho + ν_e $\tau_{1/2} \approx 75$ m

- ¹⁶²Er irradiation at ILL nuclear reactor @ Grenoble: high thermal n flux
- cross section burn up 163 Ho (n, γ) 164 Ho not negligible (~200 b)
- 165 Ho $(n, \gamma)^{166}$ m Ho $(\beta, \tau_{1/2} \sim 1200 \mu)$ from Ho contamination or 164 Er

Purification

Chemical purification @ PSI before and after the irradiation

- radiochemical separation with ion-exchange chromatography
- efficiency better than 79%
- Expected $^{166 m}$ Ho contamination fraction: $\sim 10^{-3}$

Tb 161

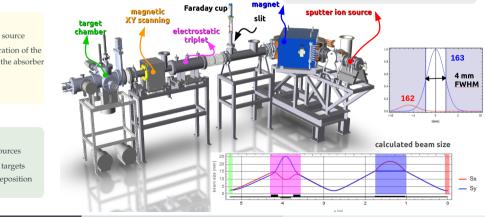
Sample processed

Enriched Er₂O₃ samples irradiated @ ILL, pre and post processed @ PSI:

- 25 mg, 55 days irradiation, $A(^{163}Ho) \sim 5 MBq$
- 150 mg, 53 days irradiation, $A(^{163}Ho) \sim 38 MBg$
- 544 mg, 50 days irradiation, $A(^{163}Ho) \sim 120 MBg$
- * ~ 100 MBg enough for R&D and 500 pixels

Tm 163 1.81 h ⁶ _β + γ 104; 69; 241; 1434; 1397	Tm 164 5.1 m 2.0 m h (h 2.0 m h 2.0	Tm 165 30.06 h ⁶ β ⁺ γ 243; 47; 297: 807	Tm 166 7.70 h ⁶ β ⁺ 1.9 γ779; 2052; 184; 1274	Tm 167 9.25 d	$\begin{array}{c} Tm \ 168 \\ 93.1 \ d \\ \epsilon; \beta^+ \\ \beta^ \\ \gamma \ 196; 816; \\ 447. \end{array}$
Er 162 0.139	Er 163 75 m	Er 164 1.601	Er 165 10.3 h	Er 166 33.503	Er 167
σ19 σ _{n. α} <0.011	β ⁺ γ (1114) 9	ar 13 σn, α <0.0012	е по у	σ3+14 σ _{n.α} <7E-5	ty 208 σ 650 σ σ σ 3Ε-6
Ho 161 6.7 s 2.5 h	Ho 162 68 m 15 m	Ho 163	Ho 164	Ho 165 100	Ho 166 1200 a 28.80 h
γ 28; 78 e ⁻	e ⁺ 1.e ⁺ γ 165; 1520; 283; 937e ⁺	ly 210 no y	by 37; 57 e b ⁻ b ⁻ 1.0 y 97; 73 e b ⁻	σ 3.1 + 58 σ _{n, α} <2E-5	0.07 γ 184; 1.9 810; 712 γ81 φ 3100 θ ^m
Dy 160 2.329	Dy 161 18.889 9 600	Dy 162 25.475	Dy 163 24.896	Dy 164 28.260	Dy 165 1.3 m ^{by 106; e⁻} ^{β⁻0.9; 1.0 ^y 515 (382)}
u _{n.u} <0.0003 Tb 159	σ _{6, n} <1E-6 Tb 160	a 170 Tb 161	σ _{n. α} <2E-5 Tb 162	1610 + 1040 Tb 163	Tb 164

NOW2022


Ion implanter

Ion implanter designed to embed Ho inside the detectors absorbers and to perform a mass separation of the 163 Ho from the other contaminants.

- extraction voltage 30-50 kV \rightarrow 10-100 nm implant depth
- ¹⁶³Ho/¹⁶⁶^mHo separation better than 10⁵

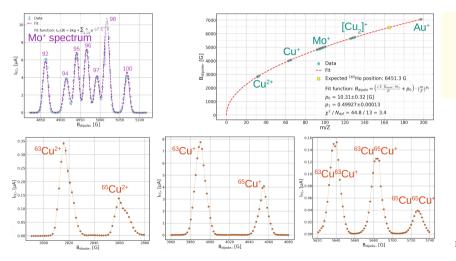
Main components:

- Ar penning sputter ion source
- magnetic dipole mass analyzer (B $m \alpha x = 1 T$)
- faraday cup and slit
- target chamber for Au co-evaporation

Au co-evaporation:

- to fully encapsulate the source
- to compensate the saturation of the ¹⁶³Ho concentration in the absorber
- to avoid oxidation
- heat capacity

Target chamber:


- 4 COMIC microwave sources
- 4 Ar beams hit on 4 Au targets

 \rightarrow 4 in order to increase the deposition rate and uniformity

Ion implanter calibration

Magnetic field vs mass-to-charge ratio calibration with Cu, Au and Mo peaks.

- Cu/Au from sputter target/holder
- Mo from the anode
- The source produces also multiple-ionized and dimeric ions from the same material, which can also be used for calibration

for more details Mariia Fedkevych's talk @ NuMass 2022

Efforts are put to build the most suitable target for the Ho sputtering

 \rightarrow different techniques for target fabrication are tested

Molecular plating

Electrodeposition of Ho complexes in an organic solvent at high voltages with high uniformity and efficiency (>90%)

Drop-on-demand inkjet printing

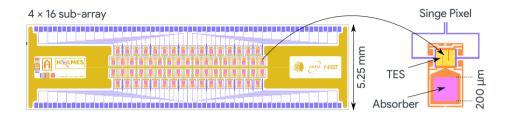
put droplets of solution containing compound and let solvent evaporate to deposit the dissolved compound

Sintered targets

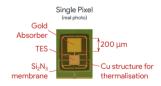
Ho(NO₃)₃ in a metallic mixture of Zr and Y fine-grained powder preparade pressed at 350 bar/cm² and baked at 950°C

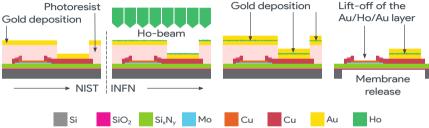
Coupled reduction

Ho reduction and diffusion into backing material due to thermodynamically favourable formation of intermetallic compound



With sintered target we obtained the best current-stability:O(200) nA over 15 h!

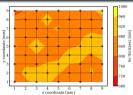

ena	



- Mo/Cu TES coupled to Gold absorbers where ¹⁶³Ho will be ion-implanted
- 2 μ m Gold thickness for full e/ γ absorption
- Side-car design to avoid TES proximitation effect
- Thermal conductance G engineering for $\tau_{\mbox{\tiny decay}}$ control
- 4×16 linear sub-array designed for high implant efficiency and low parasitic L
- Optimized design for high speed and high resolution:

Specs @ 2.8 keV : $\Delta E_{FWHM} \simeq 3-4\,eV$, $\tau_{rise} \simeq 10\,\mu s$, $\tau_{decay} \simeq 100\,\mu s$

¹⁶³Ho isotopes embedded in metallic absorbers (through ion-implantation)


- Fabrication in two steps:
 - $\blacktriangleright\,$ NIST: TES fabrication with 1 μm Au absorber
 - + INFN: ^{163}Ho implantation, final deposition of 1 μm Au and SiN membrane release
- final micromachining step definition in progress
 - \Rightarrow KOH vs DRIE machining

HOLMES: detectors fabrication process (cont.)

Au deposition

- 1µm of Au deposited
 - with Ion beam sputter system
 - at rate of around 52 nm/h \rightarrow about 20 h for 1 μ m
 - gold thickness uniformity $\rightarrow\,\sigma_t\,/\,t\sim 4\%$

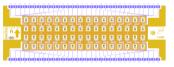
Lift-off

Removal of the resist mask (7 µm thickness)

- sample in acetone at 40° C for 24 h

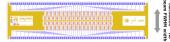
Elena Ferri

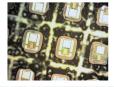
After the lift-off, the Au deposited remains only on the absorber:


 \rightarrow Minimal crowning and almost isotropical deposition thanks to the 4 ion beam sources

Membrane release

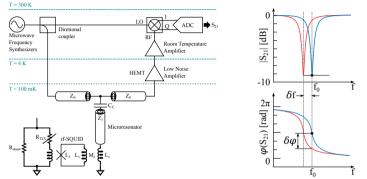
кон

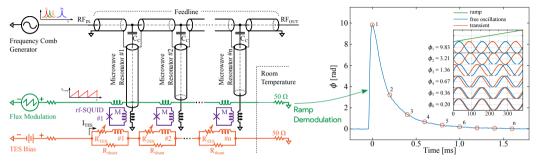

- Anisotropic wet etching
- Requires more spacing between pixels
- Sucessfully tested


DRIE

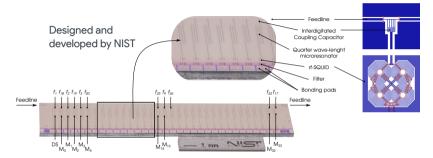
NOW2022

- Silicon Deep Reactive Ion Etching
- Best for close packing
- High implant efficiency
- Not yet tuned

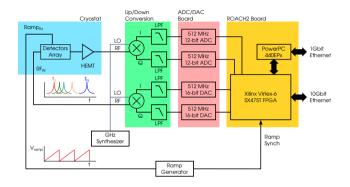




HOLMES TESs readout is based on microwave rf-SQUID multiplexing

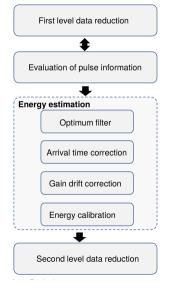

- rf-SQUID inductively coupled to a dc-biased TES and to a high-Q superconducting $\lambda/4$ -wave resonator
- Change in TES current \Rightarrow change in the input flux to the SQUID
- The rf-SQUID transduces a change in input flux into a variation of resonant frequency and phase
- Each micro-resonator can be continuously monitored by a probe tone

- By coupling many resonators to a single microwave feedline it is possible to readout multiple detectors
- Sensors are monitored by a set of sinusoidal probe tones (frequency comb)
- At equilibrium, the resonator frequencies are matched to the probe tone frequencies, and so each resonator acts as a short to ground
- The ramp induces a controlled flux variation in the rf-SQUID, which is crucial for linearizing the response
- Large multiplexing factor (> 100) and bandwidth, currently limited by the digitizer bandwidth


The core of the microwave multiplexing is the multiplexer chip

- Superconducting 33 quarter-wave coplanar waveguide (CPW) microwave resonators covering 500 MHz in the 4-8 GHz frequency range
- 200 nm thick Nb film deposited on high-resistivity silicon ($\rho > 10 \text{ k}\Omega \cdot \text{cm}$)
- each resonator has a trombone-like shape with slightly different length
- 2 MHz bandwidth per resonator
- separation beetween resonances 14 MHz (to prevent cross-talk)
- resonance depth greater than 10 dB
- squid equivalent noise less than $2\mu\varphi_o/\sqrt{Hz}$

HOLMES DAQ with the ROACH2


- Software Defined Radio with the open system ROACH2 (Casper collaboration)
- ADC BW 550 MHz
- real time pulse reconstruction
 - \rightarrow at the moment readout available for 64 channels

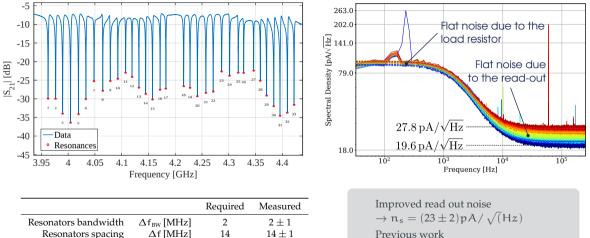
Multiplexing factor proportional to the target rise time

- $n_{\text{TES}}\approx 3.4\cdot\tau_{\text{rise}}$
- requiring $\tau_{\text{rise}}=10 \mu s$

Event reconstruction

- Robust analysis is mandatory for achieving the expected microcalorimeter intrinsic energy resolution.
- The data from each pixel need to be processed separately.

Watson toolkit


- Software for low temperature detector data analysis
- Object oriented programming. Written in python (numpy and scipy)
- Fast, easy to read, easy to fix code
- GUI with QT5 for handy day to day operations
- Data are stored in hdf5 (hierarchical, filesystem-like data format)Anisotropic wet etching

Elena Ferri

Multiplexing: characterization results

Previous work

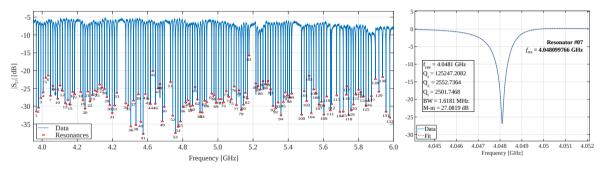
$$\rightarrow$$
 n_s = (26 ± 7)pA/ $\sqrt{(Hz)}$

more details on IEEE TAS 31 (2021) 5, 2100205

All the microresonator parameters match the HOLMES specification

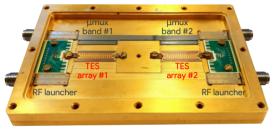
 $\Delta S [dB]$

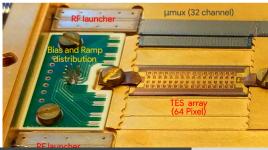
> 10


Resonators depth

 29 ± 6

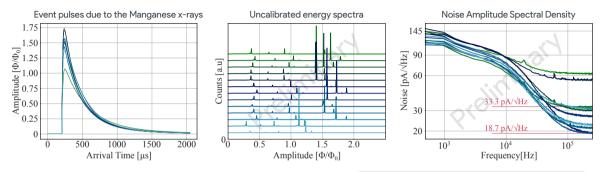
Multiplexing: characterization results (cont.)


Forward transmissiom S₂₁ of 4 different band chips wired in series and an example of resonce fit



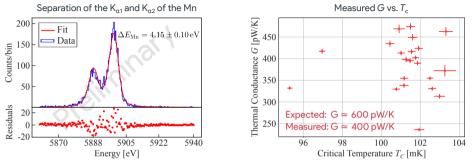
Four µmux in series are able to cover a wide frequency range from 4 to 6 GHz

HOLMES: test on the processed detectors



- Holder designed to host 128 Channels:
 - $2 \times (4 \times 16)$ sub arrays
 - ► 4× µmux multiplexer chips with 4 bands
- 8 holders will cover the entire HOLMES in its final configuration (1024 channels);
- Preliminary low temperature tests performed with fully processed arrays (with KOH):
 - detector with (1 μm) absorber at NIST
 - absorber finalized (1 μm) at MIB
 - wet etching at MIB
- 32+32 TES pixels bonded (half of the available)
- Absorbers without the ¹⁶³Ho implanted
- New SDR firmwares for 16 and 32 channels: 16-channel version fully operational 32-channel version under testing
- New up/down-conversion system fully operational

Elena Ferri



- non implanted detectors with KOH membrane release
- 13/16 working detectors (3 detectors with problematic resonators)
- Calibration run performed with a primary $^{55}\mathrm{Fe}$ source faced to different targets
- X-ray fluorescence emission lines:

⁵⁵Mn (5.9 keV) ⁴⁰Ca (3.7 keV) ⁴⁰Cl (2.6 keV) ²⁷Al (1.5 keV)

Measured read out noise $n_{s} \sim (19-33)\,pA/\sqrt{Hz}$

- Compatible with the previous prototypes Eur. Phys. J. C (2019) 79:304
- Two channels with higher noise due to not optimal rf-SQUID oscillations

For the best detector: $\Delta E_{Mn} = 4.15 \pm 0.10 \, eV @ 5.9 \, keV$

- Energy resolution in the (4 6) eV range @ 5.9 keV
 Large spread probably due to the large G dispersion different G ⇒ different working point
- $\tau_{rise} \simeq 20~\mu s$ and $\tau_{fall} \simeq 300~\mu s$ longer fall time due to lower thermal conductance G

KOH vs DRIE machining

- same energy resolution and rise time
- longer decay time and larger coupling dispersion

Background

The count rate at the ROI is very low (0.26 counts/eV/day/det @ [2650,2833]eV) \rightarrow the fraction of background signals must be kept as low as possible

Background

1. Pile-up

 \rightarrow the main background source for pixel with A $_{E\,C}\sim$ 300 Bq and $\tau_R\sim$ 1.5 $\mu s.$ (0.8 counts/eV/day/det @ ROI)

2. Internal radionoclides

 $^{166\,\mathrm{m}}\,\mathrm{Ho} \rightarrow \mathrm{expected}$ count rate <0.01 counts/eV/day/det @ ROI

3. Natural radioactivity

Smooth and almost flat background @ ROI except for 40 K

4. Cosmic rays

GEANT 4 simulation $5x10^{-5}$ counts/eV/day/det @ [0,4000] eV

3. and 4. can be comparable or even overcome the pile-up rate if the 163 Ho activity per pixel is too low.

Background measurement

Single interaction in a pixel produces a background spectrum which seems to be monotonically decreasing.

0.0001 counts/eV/day/det @ HOLMES ROI \rightarrow lowering with a muon veto

Conclusion

- A powerful tool to determine the effective electron-neutrino mass is the calorimetric measurement of the energy released in ¹⁶³Ho electron capture (EC)
- The HOLMES experiment will performe a direct measurment of the neutrino mass by using microcalorimenters with absorber ¹⁶³Ho-implanted
- Ion implanter is working as expected. The production of a proper sputter target is almost ready!
- The software for analysis and signal processing of microcalorimeters events is up and running!
- For reading out the 1024 detectors, HOLMES will use the microwave multiplexing read-out
 - All the microresonator parameters match the HOLMES specification
- Transition edge sensors with Au absorber where the ¹⁶³Ho will be ion-implanted
 - Tested and tuned the final array fabrication processes
 - TES characterization with a fluorescence source without Ho
 - The performances (energy and time resolution) required by HOLMES are achieved
- The first phase of the HOLMES experiment is expected on the last quarter of 2022: a low dose implantation of a 2x32 pixel array