

# **Updates on the HOLMES detector array fabrication**

Matteo Borghesi

#### Introduction to HOLMES: EC and neutrino mass measurement

• Direct measurement of the electron neutrino mass studying the EC decay of <sup>16<sup>3</sup></sup>Ho

 $^{16}{}^{3}Ho \rightarrow ^{16}{}^{3}Dv^{H} + v_{e} \rightarrow ^{16}{}^{3}Dv + E_{c}$ 

$$(2 \cdot 10^{11} \, {}^{16}^3$$
Ho nuclei = 1 Bq )

• Pro: low Q value (2.833 keV), "short" half life ( $\tau_{1/2} \sim 4570$  years) and the proximity of the M1 peak to the end-point



#### Introduction to HOLMES: neutrino mass sensitivity



#### **Transition Edge Sensors**

• A TES is a superconductor film operated in the narrow temperature region between the resistive and the superconducting state

The resistance is strongly dependent on temperature It is a very sensitive termometer, able to detect a temperature variation of the order of a fraction of mK

• The R vs T curve depends on different things, such as: the material and the dimension of the film, the geometry of the TES, ....



• Work aimed at finding the optimal TES parameters for HOLMES has been carried out and concluded during the last year



#### **Transition Edge Sensors: electrical and thermal response**

• After defining a model, the TES behavior can be described by a set of differential equations....

... but determining which thermal model to use is no easy task!

 We are currently using the simplest one, the so called **one body model** (a)

**CPW** for RF carriers



$$L\frac{dI}{dt} = V - IR_{SH} - IR_{TE}S(T, I)$$
$$C\frac{dT}{dt} = -P_{bath} + P_{J} + P$$

**HWLMES** 



#### **Transition Edge Sensors: signal shape & useful formulas**



### **Transition Edge Sensors: the design for HOLMES**

- TES + absorber with a sidecar geometry
- Au absorber 200x200x2  $\mu m^3$  . It will ensure 99.99998% (99.9277%) probability of stopping the electrons (photons) from the  $^{16}$  Ho decay
- The TES surface is shaped using copper bars (increase ETF and reduce the excess electrical noise)
- SiN membrane + copper perimeter to control the thermal conductance toward the thermal bath *G*

- G,  $I_{TE}^{S}(I_{bias})$ ,  $R_{TE}^{S}(I_{TE}^{S})$  have been measured
- C, L,  $\alpha$ ,  $\beta$  have been evaluated through the noise spectra fit and NIST preliminary estimation

Full TES characterization through complex impedance measurement is scheduled!





#### **Transition Edge Sensors: production**



HULMES



#### **Target chamber**

#### Why Au co-evaporation?

- <sup>16<sup>3</sup></sup>Ho concentration in absorber saturates
- Au deposited in situ to avoid oxidation
- Heat capacity





### **Test goals:**

- Beam parameters optimization
- Calibration
- Deposition rate estimation
- Evaluation of the uniformity of the sputtered gold









#### Target chamber test @ Milano Bicocca: deposition rate

4 COMIC microwave sources 4 argon beams 4 Au targets

With < 250 μA total Ar current

- Increase deposition uniformityIncrease deposition rate
- Target Chamber Pressure:  $\sim 10^{-8}$ mbar Total Argon ion current achieved:  $\sim 250 \mu A$ Rate measured with a quartz microbalance near the target
- With ~ 250  $\mu$ A total Ar current

< rate @ microbalance > = 39 ± 2 nm/h < rate @ target > = 52 ± 4 nm/h

~ 20 h for 1 um deposition





#### Target chamber test @ Milano Bicocca: uniformity

• Au sputtered for ~ 22 hours on a Si slab  $1x1cm^2$ 

▶ with a drilled mask with 9x9 holes on top

• The thickness in the center of the circles were measured with a profilometer







#### Lift-off

- After the gold deposition on the absorbers, the photoresist mask (7 µm thickness) must be removed
- Sample in acetone (40°C) for 24h

#### After the lift-off, the Au deposited remains only on the absorber



11

#### **KOH vs DRIE**



- Best for close packing and high implant efficiency
- Not yet properly tuned

Work in progress @ Trustech

Silicon KOH anisotropic wet etching

- Requires more spacing between pixels
- Succesfully tuned



#### **KOH etching test**

 Potassium hydroxide (KOH) displays an etch rate selectivity dozens of times higher in <100> crystal directions than in <111> directions
 Si

performance of the DRIE array







- The TES arrays were placed in a 33% KOH with isopropanol solution
  - Estimated ETCH rate @ 80°C~ 1 μm/minute
- The temperature was mainteined 65  $^{\circ}$ C <T< 70  $^{\circ}$ C to avoid turbolent motion in the solution



1.





#### **Pulse decay time**

• But...

 $\dots$  the measured pulses were ~ 3 times slower than the ones from the baseline detector (entirely produced at NIST)

Something went wrong during the etching procedures?



• How to evaluate the thermal conductance of a TES (assuming one body model)

$$P_{bath} = I_{TE}^{2} s R_{TE} s$$

$$P_{bath} = k(T_{TE}^{n} s - T_{ba}^{n} t_{h})$$

$$= \frac{GT_{TE}s}{n} \left[ 1 - \left( \frac{T_{ba}t_{h}}{T_{TE}s} \right)^{n} \right]$$
ECT\* Trento 10-14/02/2020
$$Measured with IV curves$$

$$\prod_{n=4}^{6} G_{n} = G_{n} G_{n} G_{n} G_{n} G_{n} G_{n} = G_{n} G_{n} G_{n} G_{n} = G_{n} G_{n} G_{n} G_{n} G_{n} G_{n} = G_{n} G_{n$$



14



#### G and dead time

• G was 25-50% lower than the target one (~600 pW/K)

The etched area measured is the correct one

The Tc does not justify such a low G (it should be ~ 70 mK)

Issues with the membrane production?
 We are currently working with NIST to fix this problem for the future

% of discarded events

**HWLMES** 

|                    | DT (90-30) [μs] | Single detector<br>activity [Hz] | Discarded events<br>[% ] |
|--------------------|-----------------|----------------------------------|--------------------------|
| <g> ~ 300 pW/K</g> | 350             | 300                              | 27                       |
|                    | 350             | 10                               | 1                        |
| <g> ~ 600 pW/K</g> | 100             | 300                              | 8                        |
|                    | 100             | 10                               | 0.3                      |





ECT\* Trento 10-14/02/2020

M. Borghesi

#### **Energy resolution**

- Test @Milano with  $\mu$ -wave multiplexing ( $f_{samp} = 50^0 \text{ kH}^z$ )
- Mn (5.9 keV) + fluorescence source (Ca 3.7 keV; Cl 2.6 keV ; Al 1.5 keV)
- Signals RT ~ 15  $\mu$ s (@Ca)





ECT\* Trento 10-14/02/2020

#### **Pulse rise time & fast signals**

• Faster the pulse rise time, the better is the time resolution of the device

Pile-Up Discrimination Algorithms for the HOLMES Experiment E. Ferri et al. Algorithms for Identification of Nearly-Coincident Events in Calorimetric Sensors B. Alpert et al.

17

• The pulse rise time can be tuned at will\*\*  $\tau_R \propto L$ 

As long as:

- the readout bandwidth is enough to reconstruct the rise edge the signals
- the sampling time is much faster than the signal itself
- With the uMUX readout system, the points in a signal that are acquired are phase differences



#### **Pulse rise time & fast signals**

• Faster the pulse rise time, the better is the time resolution of the device

Pile-Up Discrimination Algorithms for the HOLMES Experiment E. Ferri et al. Algorithms for Identification of Nearly-Coincident Events in Calorimetric Sensors B. Alpert et al.

• The pulse rise time can be tuned at will\*\*  $\tau_R \propto L$ 

As long as:

- the readout bandwidth is enough to reconstruct the rise edge the signals
- the sampling time is much faster than the signal itself
- With the uMUX readout system, the points in a signal that are acquired are phase differences



#### **Pulse rise time & fast signals**





• Discarding those events would have introduced a deformation in the final <sup>163</sup>Ho spectrum

We wrote an algorithm that successfully identifies and corrects the 100% of these pulses



ECT\* Trento 10-14/02/2020

M. Borghesi

### Pulses rise time & pileup discrimination algorithms (work in progress)

Pile up (pup): two events of energies E<sub>1</sub> and E<sub>2</sub> which occur within a time span shorter than the time resolution of the detector and are recorded as a single event with an energy E ~ E<sub>1</sub> + E<sub>2</sub>



• With an activity  $A_{EC}$  of 300 Hz, random coincidence events are one of the main sources which impairs the ability to identify the effect of a non vanishing neutrino mass



#### Pulses rise time & pileup discrimination algorithms (work in progress)



HULMES

events @ 2830 eV

#### Conclusion

 We have successfully tested the last steps in the fabrication of the TES array

We are very close to have the Ho implanted in the detectors

• We are ready to measure the first 64 detector array

• We are finishing developing the analysis and signal processing program (in Python 🥏 , numpy) (Almost done!)

• A background measurement with 16 TESs will start soon, and will last for ~ 1 month



#### BACKUP



# READOUT uMux

# Cose da fare

## Misura di pup con autocalibrazione

. . . .