Multiplexed superconducting detectors for a neutrino mass experiment

Elena Ferri

University of Milano-Bicocca and INFN of Milano-Bicocca on behalf of HOLMES collaboration

- Calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)

 \Rightarrow measurement of the entire energy released except the ν energy

- proposed for the first time by A. De Rujula e M. Lusignoli in 1982 Phys. Lett. 118B (1982) 429 Nucl. Phys. B219 (1983) 277-301
- rate at the end point depends on $(Q E_{M1})$: the proximity to M1 resonance peak enhances the statistics at the end point (i.e. sensitivity on m_{ν})
- Searching for a tiny deformation caused by a non-zero neutrino mass to the spectrum near its end point

Elena Ferri

 $S(E_c) = \left[N_{ev}(N_{EC}(E_c, m_v) + f_{pp} \times N_{EC}(E_c, 0) \otimes N_{EC}(E_c, 0)) + B(E_c)\right] \otimes R_{\Delta E}(E_c)$

Nev	: total number of events
$N_{EC}(E_c, m_v)$: ¹⁶³ Ho spectrum
B(E)	: background energy spectrum
$R_{\Delta E}(E_c)$: detector energy response function
fpp	: fraction of pile-up events
$R_{\Delta E}(E_c)$: detector energy response function
ΔE	intervall of energy

more details on Eur. Phys. J. C 74 (2014) 3161

- Pulse pile-up occurs when multiple events arrive within the temporal resolving time of the detector
- Unresolved pile-up events close to the end-point impairing effect on the end-point measurement
- The ¹⁶³Ho pile-up events spectrum is quite complex and presents a number of peaks at the end-point
- To resolve pile-up:
 - Detector with fast signal rise-time $\tau_{\texttt{rise}}$
 - Pile-up recognition algorithm (i.e. Wiener filter, Singular Value Decomposition)

EUCAS 2021 SEPTEMBER, 5-9 MOSCOW

The HOLMES experiment (ERC-2013-AdG no. 340321)

The m_{ν} statistical sensitivity has:

- Strong dependence on statistic: $\Sigma(m_\nu) \propto {N_{events}}^{1/4}$
- Strong dependence on pile-up: $f_{pp} \simeq A_{EC} \cdot \tau_{\mbox{\tiny res}}$

(A $_{E\ C}$: pixel activity, $\tau_{\rm res}$: time resolution)

- Weak dependence on energy resolution ΔE ;

Multiplaxable detectors with fast response are required

HOLMES

Neutrino mass determination with a sensitivity as low as $\approx 1 \text{ eV}$

- Microcalorimeters based on Transition Edge Sensors with $^{163}\mathrm{Ho}$ implanted Au absorber
- Pixel activity of $A_{E\,C} \sim 300\,$ Bq/det
- Energy resolution: O(eV)
- Time resolution: $\tau_{\rm res} \sim 3 \ \mu s$ ($\tau_{\rm rise} = 10 20 \ \mu s$);
- 1000 channels for $3\cdot 10^{13}\,$ events collected in $T_M=3\,years$

more details on Eur. Phys. J. C (2015) 75: 112

- Mo/Cu TES coupled to Gold absorbers where ¹⁶³Ho will be ion-implanted
- 2 μ m Gold thickness for full e/ γ absorption
- Side-car design to avoid TES proximitation effect
- Thermal conductance G engineering for $\tau_{\mbox{\tiny decay}}$ control
- 4×16 linear sub-array designed for high implant efficiency and low parasitic L
- Optimized design for high speed and high resolution:

Specs @ 2.8 keV : $\Delta E_{FWHM} \simeq 3-4\,eV$, $\tau_{rise} \simeq 10\,\mu s$, $\tau_{decay} \simeq 100\,\mu s$

¹⁶³Ho isotopes embedded in metallic absorbers (through ion-implantation)

- Fabrication in two steps:
 - $\blacktriangleright\,$ NIST: TES fabrication with 1 μm Au absorber
 - ${\scriptstyle \bullet}\,$ INFN: 163 Ho implantation, final deposition of 1 μm Au and SiN membrane release
- final micromachining step definition in progress
 - \Rightarrow KOH vs DRIE machining

HOLMES TESs readout is based on microwave rf-SQUID multiplexing

- rf-SQUID inductively coupled to a dc-biased TES and to a high-Q superconducting $\lambda/4$ -wave resonator
- Change in TES current \Rightarrow change in the input flux to the SQUID
- The rf-SQUID transduces a change in input flux into a variation of resonant frequency and phase
- Each micro-resonator can be continuously monitored by a probe tone

- By coupling many resonators to a single microwave feedline it is possible to readout multiple detectors
- Sensors are monitored by a set of sinusoidal probe tones (frequency comb)
- At equilibrium, the resonator frequencies are matched to the probe tone frequencies, and so each resonator acts as a short to ground
- The ramp induces a controlled flux variation in the rf-SQUID, which is crucial for linearizing the response
- Large multiplexing factor (> 100) and bandwidth, currently limited by the digitizer bandwidth

The core of the microwave multiplexing is the multiplexer chip

- Superconducting 33 quarter-wave coplanar waveguide (CPW) microwave resonators covering 500 MHz in the 4-8 GHz frequency range
- 200 nm thick Nb film deposited on high-resistivity silicon ($\rho > 10 \text{ k}\Omega \cdot \text{cm}$)
- each resonator has a trombone-like shape with slightly different length
- 2 MHz bandwidth per resonator
- separation beetween resonances 14 MHz (to prevent cross-talk)
- resonance depth greater than 10 dB
- squid equivalent noise less than $2\mu\varphi_o/\sqrt{Hz}$

HOLMES DAQ with the ROACH2

- Software Defined Radio with the open system ROACH2 (Casper collaboration)
- ADC BW 550 MHz
- real time pulse reconstruction
 - \rightarrow at the moment readout available for 64 channels

Multiplexing factor proportional to the target rise time

- $n_{\text{TES}}\approx 3.4\cdot\tau_{\text{rise}}$
- requiring $\tau_{rise} = 10 \mu s$

Multiplexing: characterization results

		Required	Measured
Resonators bandwidth	Δf_{BW} [MHz]	2	2 ± 1
Resonators spacing	$\Delta f [MHz]$	14	14 ± 1
Resonators depth	$\Delta S [dB]$	> 10	29 ± 6

All the microresonator parameters match the HOLMES specification

Improved read out noise $\rightarrow n_s = (23 \pm 2)pA/\sqrt{(Hz)}$ Previous work $\rightarrow n_s = (26 \pm 7)pA/\sqrt{(Hz)}$ more details on IEEE TAS 31 (2021) 5, 2100205

Multiplexing: characterization results (cont.)

Forward transmissiom S_{21} of 4 different band chips wired in series and an example of resonce fit

Four μ mux in series are able to cover a wide frequency range from 4 to 6 GHz

HOLMES: test on the processed detectors

- Holder designed to host 128 Channels:
 - $2 \times (4 \times 16)$ sub arrays
 - $4 \times \mu mux$ multiplexer chips with 4 bands
- 8 holders will cover the entire HOLMES in its final configuration (1024 channels);
- Preliminary low temperature tests performed with fully processed arrays (with KOH):
 - detector with (1 μm) absorber at NIST
 - absorber finalized (1 μm) at MIB
 - wet etching at MIB
- 32+32 TES pixels bonded (half of the available)
- Absorbers without the ¹⁶³Ho implanted
- New SDR firmwares for 16 and 32 channels: 16-channel version fully operational 32-channel version under testing
- New up/down-conversion system fully operational

Elena Ferri

- non implanted detectors with KOH membrane release
- 13/16 working detectors (3 detectors with problematic resonators)
- Calibration run performed with a primary $^{55}\mathrm{Fe}$ source faced to different targets
- X-ray fluorescence emission lines:

⁵⁵Mn (5.9 keV) ⁴⁰Ca (3.7 keV) ⁴⁰Cl (2.6 keV) ²⁷Al (1.5 keV)

Measured read out noise $n_{\rm s} \sim (19-33)\,pA/\sqrt{Hz}$

- Compatible with the previous prototypes Eur. Phys. J. C (2019) 79:304
- Two channels with higher noise due to not optimal rf-SQUID oscillations

For the best detector: $\Delta E_{Mn} = 4.15 \pm 0.10 \, eV @ 5.9 \, keV$

- Energy resolution in the (4 6) eV range @ 5.9 keV
 Large spread probably due to the large G dispersion different G ⇒ different working point
- $\tau_{rise} \simeq 20~\mu s$ and $\tau_{fall} \simeq 300~\mu s$ longer fall time due to lower thermal conductance G

KOH vs DRIE machining

- same energy resolution and rise time
- longer decay time and larger coupling dispersion