

The Electron Capture Decay of ¹⁶³Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity

ERC-Advanced Grant 2013 PI: <u>Stefano Ragazzi</u> INFN / U. di Milano-Bicocca

Angelo Nucciotti

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

- absolute neutrino mass
- neutrino mass measurements
- Iow temperature detectors
- ¹⁶³Ho EC decay for direct neutrino mass measurements
- HOLMES experiment
 - sensitivity MC simulations
 - experiment design
 - task development status
- conclusions

Neutrino properties

- neutrinos are massive fermions
- there are 3 active neutrino **flavors: e, \mu, \tau**
- neutrino flavor states are mixtures of 3 mass states

Neutrino open guestions

- mass scale: i.e. mass of the lightest v
- degenerate $(m_1 \approx m_2 \approx m_3)$ or hierarchical masses
 - ▶ mass hierarchy: $m_1 < m_2 \ll m_3$ or $m_3 \ll m_1 \approx m_2$?
- $\mathbf{v} = \overline{\mathbf{v}}$? i.e. Dirac or Majorana particle?
- CP violation in the lepton sector

Direct neutrino mass measurements

kinematics of weak decays with ν emission

- ► low *Q* nuclear beta decays (³H, ¹⁸⁷Re...)
- only energy and momentum conservation
- ► no further assumptions

$(A,Z) \rightarrow (A,Z+1) + e^{-} + \overline{\nu}_{e}$

 $N(E_{\beta}) \propto p_{\beta} E_{\beta}(Q - E_{\beta}) \sqrt{((Q - E_{\beta}) - m_{\nu}^{2})} F(z, E_{\beta}) S(E_{\beta})$

- 2 approaches with different systematics:
 - **spectrometry** with the β source outside
 - **calorimetry** with the β source inside

KATRIN large MAC-E filter spectrometer with ³H

MARE/ECHO/HOLMES

array of low temperature microcalorimeters with ¹⁸⁷Re or ¹⁶³Ho

≈5 mm

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

kinematics of weak decays

 \blacktriangleright observable in nuclear beta decays with $\overline{\mathbf{v}}_{e}$ (\mathbf{v}_{e}) emission

 $|\mathbf{v}_{e}\rangle = \sum_{k} U_{ek} |\mathbf{v}_{k}\rangle \qquad N(E) \propto p_{\beta} E_{\beta} (Q - E_{\beta}) \sum_{k} |U_{ek}|^{2} \sqrt{(Q - E_{\beta})^{2} - m_{v_{k}}^{2}} F(Z, E_{\beta}) S(E_{\beta})$

$$\boldsymbol{m}_{\beta} = \sqrt{\sum_{k} m_{\nu_{k}}^{2} |\boldsymbol{U}_{ek}|^{2}}$$
$$\boldsymbol{N}(E) \approx p_{\beta} E_{\beta} (Q - E_{\beta}) \sqrt{(Q - E_{\beta})^{2} - \boldsymbol{m}_{\beta}^{2}} F(Z, E_{\beta}) S(E_{\beta})$$

Mass scale: experimental tools / 1

Experimental status for neutrino mass / 1

Cosmological measurements:

▶ Planck TT, TE, EE+lowP+BAO: *m_Σ*<0.17 eV (95%)</p>

0.05

0.04

0.03

0.02

0.01

18.55

count rate

P. A. R. Ade et al., A&A 594, A13 (2016)

99 data for m.²

18.58

2001 data

Tritium beta decay end-point measurements:

► Troitsk + Mainz experiments: *m_B*<2.2 eV (95%)

Ch. Kraus et al., Eur. Phys. J. C 73, (2013) 2323; V. N. Aseev, Phys. Rev. D 84, (2011) 112003.

Neutrinoless double-beta decay searches:

- ► GERDA (⁷⁶Ge): *m*_{ββ}<0.15÷0.33 eV (90%) Nature 544 (2017) 7648
- ► KamLAND-Zen (¹³⁶Xe): *m*_{ββ}<0.06÷0.16 eV (90%) Phys. Rev. Lett. 117 (2016) 082503
- CUORE-0 (¹³⁰Te): m_{ββ} < 0.27÷0.76 eV (90%) Phys. Rev. Lett. 115 (2015) 102502
 A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

G.L.Fogli et al., Phys. Rev. D 86 (2012) 013012

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

Direct v mass measurements: the challenge

11

Spectrometers: source \neq **detector**

$\boldsymbol{\beta}$ differential or integral spectrometer

 β s from the ³H spectrum in δE are magnetically and/or electrostatically selected and transported to the counter

high statistics

- high energy resolution
- Iarge systematics
 - source effects
 - decays to excited states
- background

Calorimeters: source ⊆ detector

- no backscattering
- no energy losses in source
- no decay final state effects
- no solid state excitation
- Iimited statistics
- pile-up background
- spectrum related systematics

Spectrometers: KATRIN

largest electrostatic spectrometer with gaseous ³H source (E_0 =18.6keV)

expected statistical sensitivity m_{ve} < 0.2 eV 90% CL</p>

start data taking in 2017

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

- quasi-)equilibrium thermal detector
- complete energy thermalization
 - calorimetry
- △**T**=**E**/**C** (*C* thermal capacity)
 - ► low **C**
 - \triangleright low T (i.e. T << 1K)
 - dielectrics, superconductors
- Pros and cons
 - high energy resolution
 - Iarge choice of absorber materials
 - true calorimeters
 - only energy and time informations
 - slow time response

Low temperature detector principles

$$C(T_{ph})\frac{dT_{ph}}{dt} + G(T_{ph},T_0) = P(t)$$

$$P(t) = \Delta E\delta(t) \rightarrow T_{ph}(t) = T_0 + \frac{\Delta E}{C} e^{-t/\tau}$$
for $t > 0$ and with $\tau = C/G$

resolution limit: random energy flow through *G* statistical fluctuations of internal energy *U*

$$U = \langle U \rangle \pm \Delta U_{rms}$$

$$N_{ph} = \frac{\langle U \rangle}{\langle E_{ph} \rangle} = \frac{CT}{k_B T}$$

$$\Delta U_{rms} = \sqrt{N_{ph}} (k_B T) = \sqrt{k_B T^2 C}$$

1 mg of Re @ 100 mK $C \sim T^{3}$ (Debye) $\Rightarrow C \sim 10^{-13}$ J/K 6 keV X-ray $\Rightarrow \Delta T \sim 10$ mK $G \sim 10^{-11}$ W/K $\Rightarrow \tau = C/G \sim 10$ ms $\Delta U_{rms} \sim 1$ eV

CUORE experiment

CUORE: <u>Cryogenic</u> <u>Underground</u> <u>Observatory</u> for <u>Rare</u> <u>Events</u>

- ► searches for ¹³⁰Te neutrinoless double-beta decay
- ▶ 988 natural TeO₂ 750 g crystals as low temperature detectors
- ► total mass 740 kg TeO₂ \Rightarrow 206 kg of ¹³⁰Te
- now cold at about 10 mK

Superconducting transition edge sensors (TES)

- superconductor thin films operated inside the phase transition at T_c
 - ▶ elemental superconductors: Ir (T_c = 112 mK), W (T_c = 15 mK), ...
 - ▶ metal-superconductor bilayers ⇒ tunable T_c (20÷200 mK) : Mo/Cu, Ti/Au, Ir/Au, ...
- high sensitivity $TdR/(RdT) \approx 100) \Rightarrow$ high energy resolution
 - ► as thermal sensors $\rightarrow \sigma_{E}^{2} \approx \xi^{2} k_{B} T^{2} C$
- strong electron-phonon coupling \Rightarrow high intrinsic speed
- Iow impedance ⇒ SQUID read-out ⇒ multiplexing for large arrays

17

simple pulse model

$$\mathbf{A}(\mathbf{t}) = \mathbf{A}(\mathbf{e}^{-t/\tau_{decay}} - \mathbf{e}^{-t/\tau_{rise}})$$

$\Delta t = 15 \text{ ms}$ $\Delta t = 10 \text{ ms}$ $\Delta t = 5 \text{ ms}$ $\Delta t = 3 \text{ ms}$ 0.8 amplitude [a.u.] 0.2 0 20 40 0 20 40 20 40 0 20 40 0 0 time [ms]

resolving time $\tau_{R} \approx$ pulse rise time τ_{rise}

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

2 pulses with:

- τ_{rise}= 1.5 ms
- τ_{decay} = 10 ms
- $A_2/A_1 = 0.5$

Calorimetry of beta sources

- calorimeters measure the entire spectrum at once
 - low $E_0 \beta$ decaying isotopes for more statistics near the end-point
 - ► best choice ¹⁸⁷Re: Q = 2.5 keV, $\tau_{\frac{1}{2}} \approx 4 \times 10^{10} \text{ y} \Rightarrow F(\Delta E = 10 \text{ eV}) \approx (\Delta E/Q)^3 = 7 \times 10^{-8}$
 - ▶ other option ¹⁶³Ho electron capture: $Q \approx 2.6$ keV, $\tau_{\frac{1}{2}} \approx 4600$ y

β decay calorimetry statistical sensitivity

Thermal detectors for calorimetric experiments

¹⁸⁷Re β decay

$^{187}_{75}$ Re $\rightarrow ^{187}_{76}$ Os + e⁻ + $\bar{\nu}_e$

- $5/2^+ \rightarrow 1/2^-$ unique first forbidden transition $\Rightarrow S(E)$
- end point Q = 2.47 keV
- half-life time $\tau_{1/2} = 43.2 \text{ Gy}$
- natural abundance a.i. = 63%
 - ► 1 mg metallic Rhenium ⇒ ≈1.0 decay/s

metallic rhenium single crystals

- ▶ superconductor with $T_c = 1.6K$
- NTD thermistors
- MANU experiment (Genova)
- dielectric rhenium compound (AgReO₄) crystals
 - Silicon implanted thermistors
 - MIBETA experiment (Milano)

MIBETA experiment results

- 6.2×10^{6} ¹⁸⁷Re decays above 700 eV
- $m_{\nu}^2 = -96 \pm 189_{\rm stat} \pm 63_{\rm sys} \, {\rm eV}^2$
- $m_{\nu} < 15.2 \pm 2.0_{\rm sys} \, {\rm eV} \, (90 \, \% \, {\rm C.L.})$

Electron capture calorimetric experiments

¹⁶³Ho + e⁻ \rightarrow ¹⁶³Dy* + ν_{e}

electron capture from shell ≥ M1

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- Q = 2.8 keV (recently measured with Penning trap)
 - end-point rate and v mass sensitivity depend on $Q E_{M1}$

■ $\tau_{\frac{1}{2}} \approx 4570$ years \rightarrow few active nuclei are needed (2×10^{11 163}Ho nuclei \leftrightarrow 1Bq)

From ¹⁸⁷Re to ¹⁶³Ho calorimetric experiments

scaling up ¹⁸⁷Re experiments for sub-eV sensitivity

- → MARE (Microcalorimeter Array for a Rhenium Experiment)
- ▶ no clear understanding Re absorber physics in spite of 20 years of R&D
- ▶ low ¹⁸⁷Re specific activity → "large" masses → fabrication issues
- ▶ possible large systematics \rightarrow Beta Environmental Fine Structure (BEFS)
- ¹⁶³Ho seems to be better than ¹⁸⁷Re
 - ► higher specific activity → *Holmium detector* not needed
 - ► *self calibrating* → better control of systematics
 - ► but
 - higher $Q \rightarrow$ maybe less sensitive
 - pile-up spectrum
 - chemical effects on Q
- two active projects presently
 - ECHo (Heidelberg)
 - ► MARE (→ now HOLMES)
 - ► Los Alamos National Lab., Standford University ?, ...

A. Nucciotti, Adv. High Energy Physics, 2016, 915304

Electron capture end-point experiment

- no direct calorimetric measurement of Q (end-point) so far
- complex pile-up spectrum
 - $> N_{pp}(E) = f_{pp}N_{EC}(E) \otimes N_{EC}(E) \text{ with } f_{pp} \approx A_{EC}\tau_{R}$

 A_{EC} EC activity per detector $τ_R$ time resolution (≈rise time)

goal

- neutrino mass measurement: m_v statistical sensitivity as low as 0.4 eV
- prove technique potential and scalability:
 - assess EC spectral shape
 - assess systematic errors

baseline

- TES microcalorimeters
 with implanted ¹⁶³Ho
 - ► 6.5×10¹³ nuclei per pixel
 - $A_{\rm EC}$ = 300 dec/sec
 - ► ΔE≈1eV and τ_R≈1µs
- 1000 channel array
 - 6.5×10^{16 163}Ho nuclei
 → ≈18µg
 - ► 3×10¹³ events in 3 years

→ started on February 1st 2014

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112 http://artico.mib.infn.it/holmes

erc

25

HOLMES collaboration

Univ. Milano-Bicocca INFN Milano-Bicocca

> G.Ceruti M.Faverzani E.Ferri A.Giachero A.Nucciotti A.Orlando G.Pessina A.Puiu S.Ragazzi

INFN Genova

M.Biasotti V.Ceriale G.Gallucci M.De Gerone F.Gatti L.Parodi F.Siccardi

INFN Roma

M.Lusignoli

INFN LNGS

S.Nisi

NIST B.Alpert D.Becker D.Bennett J.Fowler J.Gard J.Hays-Wehle G.Hilton J.Mates C.Reintsema D.Schmidt D.Swetz J.Ullom L.Vale **PSI** R.Dressler S.Heinitz D.Schumann

CENTRA-IST

M.Ribeiro-Gomes

ILL U.Koester

27

More on EC end-point experiments / 1

- **shake-up/shake-off** → double hole excitations
 - *n*-hole excitations possible but less probable
 - authors do not fully agree on energies and probabilities
- even more complex pile-up spectrum
 - it may be worth keeping f_{pp} smaller than 10⁻⁴

A.De Rújula, arXiv:1305.4857 R.G.H.Robertson, arXiv:1411.2906 A.Faessler et al., PRC 91 (2015) 45505

More on EC end-point experiments / 2

A.De Rújula & M. Lusignoli, J. High Energ. Phys. (2016) 2016: 15

including 2-hole shake-off processes

 $^{163}\text{Ho} \rightarrow ^{163}\text{Dy}^{\text{H1 H2}} + e^{-} + \nu_{a}$

- dominate rate at end-point
 - ▶ optimistic: factor ~40 increase
 - no analytic description of spectral shape at end-point
- make pile-up less important

Statistical sensitivity: shake-off processes

HOLMES design: more MC simulations...

Statistical sensitivity $\Sigma(m_{v})$ dependencies from MC simulations

- strong on statistics $N_{ev} = A_{EC} N_{det} t_{M}$: $\Sigma(m_v) \propto N_{ev}^{-1/4}$
- strong on rise time pile-up (probability $f_{pp} \approx A_{EC} \tau_{R}$)

weak on energy resolution ΔE

 t_{M} measuring time N_{det} number of detectors A_{EC} EC activity per detector τ_{R} time resolution (~rise time)

Statistical sensitivity and single pixel activity

high activity \rightarrow robustness against (flat) background A_{EC} =300 Bq \rightarrow *bkg*< \approx 0.1 counts/eV/day/det

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

Low energy background sources

- environmental γ radiation
- $\bullet\,\gamma,\,X$ and β from close surroundings

cosmic rays

- GEANT4 simulation for CR at sea level (only **muons**)
- ▷ Au pixel 200×200×2 μ m³ → *bkg* ≈ 5×10⁻⁵ c/eV/day/det (0 4 keV)

internal radionuclides

- \triangleright ^{166m}Ho (β^- , $\tau_{\frac{1}{2}}$ = 1200 y, produced along with ¹⁶³Ho)
- Au pixel 200×200×2 μm³

GEANT4 simulation → **bkg** ≈ 0.5 c/eV/day/det/Bq(^{166m}Ho)

▷ A(¹⁶³Ho) = 300Bq/det (↔ ≈6.5×10¹³ nuclei/det)

 $bkg(^{166m}Ho) < 0.1 c/eV/day/det \rightarrow A(^{163}Ho)/A(^{166m}Ho) > 1500$

 $\rightarrow N(^{163}\text{Ho})/N(^{166m}\text{Ho}) > 6000$

MIBETA experiment with 300×300×150 μm³ AgReO₄ crystals bkg(2..5keV)≈1.5×10⁻⁴ c/eV/day/det

35

- ¹⁶³Ho isotope production
- ¹⁶³Ho embedding system
- TES pixel R&D
- TES array design and fabrication
- TES array multiplexed read-out
- Data Acquisition System

¹⁶³Ho production by neutron activation

- ¹⁶²Er irradiation at ILL nuclear reactor (Grenoble, France)
- ▶ thermal neutron flux at ILL: 1.3×10¹⁵ n/cm²/s
- ► **burn up** ¹⁶³Ho(n, γ)¹⁶⁴Ho: $\sigma_{burn-up} \approx 200b$ (preliminary result from **PSI** analysis)
- ► ¹⁶⁵Ho(n, γ) (mostly from ¹⁶⁴Er(n, γ)) → ^{166m}Ho (β , $\tau_{\frac{1}{2}}$ =1200y) → $A(^{163}Ho)/A(^{166m}Ho)$ =100~1000
- chemical pre-purification and post-separation at PSI (Villigen, CH)

■ HOLMES needs ≈ 200 MBq of ¹⁶³Ho

with reasonable assumptions on the (unknown) global embedding process efficiency...
HOLMES source production

- enriched Er₂O₃ samples* irradiated at ILL and pre-/post-processed at PSI
 - ► 25 mg irradiated for 55 days (2014) \rightarrow A(¹⁶³Ho) \approx 5 MBq (A(^{166m}Ho) \approx 10kBq)
 - ► 150 mg irradiated for 50 days (2015) \rightarrow A(¹⁶³Ho) \approx 38 MBq (A(^{166m}Ho) \approx 37kBq)
- Ho chemical separation with ion-exchange resins in hot-cell at PSI
 - ► efficiency ≥79% (preliminary)
- **540 mg of 25% enriched Er₂O₃** irradiated 50 days at **ILL** early in 2017
 - ► $A(^{163}Ho)_{theo} \approx 130 \text{ MBq}$ (enough for R&D and 500 pixels) ($A(^{166m}Ho) \approx 180 \text{kBq}$)

* from INFN and CENTRA (Lisbon)

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

HOLMES ion implantation system / 2

testing the ion source

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

Ion source sputter target production / 1

- Metallic holmium sputter target for implanter ion source
- 30% enriched $Er_2O_3 \rightarrow Ho_2O_3$
- thermoreduction/distillation in furnace
 - ► $Ho_2O_3+2Y(met) \rightarrow 2Ho(met)+Y_2O_3$ at $T>1600^{\circ}C$
- new furnace set-up in 2016
- work in progress to
 - ► optimize the process
 - ► measure efficiency (≈70%, preliminary)

evaportated metallic holmium

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

Ion source sputter target production / 2

- Metallic holmium sputter target for implanter ion source
 - ► work is in progress to produce the sputter target
 - ► sintering Ho with other metals

NIST TES array for X-ray spectroscopy

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

TES absorber design: stopping EC radiation / 1

Geant4 + LowEnergyEM MC simulation

TES absorber design: stopping EC radiation / 2

Geant4 + LowEnergyEM MC simulation

Multiplexed TES array read-out

HOLMES array read-out: rf-SQUID µwave mux

HOLMES array read-out: rf-SQUID µwave mux

HOLMES array read-out: rf-SQUID µwave mux

µwave with RF carrier homodyne read-out

Cryogenic set-up

HOLMES DAQ: Software Defined Radio

multiplexing factor $n_{\tau ES}$ f_{BW} required bandwidth per channel $\approx 1/\tau_{rise} \rightarrow n_{\tau ES} \approx \frac{f_{ADC}}{10 f_{BW}}$

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

• for subsequent (Δt) events with energy E_1 and E_2 : time resolution $\mathbf{\tau}_{\mathbf{R}} = \mathbf{\tau}_{\mathbf{R}}(E_1, E_2)$

$$N_{pp}(E) = A_{EC} \int_{0} \tau_{R}(E, \epsilon) N_{EC}(\epsilon) N_{EC}(E-\epsilon) d\epsilon$$

- Montecarlo pile-up spectrum simulations
 - ▷ event pairs with $E_1 + E_2 \in [2.4 \text{ keV}, 2.6 \text{ keV}]$ (drawn from ¹⁶³Ho spectrum), $\Delta t \in [0, 16\mu s]$
 - \triangleright pulse shape and noise from NIST TES model, sampled with f_{sampl} , record length, and *n* bit
 - ▷ process with pile-up detection algorithms:
 - Wiener Filter WF or Single Value Decomposition SVD
- evaluate effective time resolution τ_{eff} from pile-up detection efficiency $\eta(\Delta t)$

HOLMES detector design

design mostly driven by **read-out bandwith** requirements

TES microwave multiplexing with rf-SQUID ramp modulation + Software Defined Radio (SDR)

 $\int \frac{1}{2} \operatorname{SDR} \operatorname{ADC} f_{ADC} = \operatorname{SDR} \operatorname{ADC} f_{ADC} = \operatorname{SDR} \operatorname{ADC} \operatorname{SDR} \operatorname{SDR} \operatorname{ADC} \operatorname{SDR} \operatorname{SDR} \operatorname{ADC} \operatorname{SDR} \operatorname{SDR} \operatorname{ADC} \operatorname{SDR} \operatorname{SDR$

 $f_{samp} \ge \frac{\kappa_d}{\tau_{rin}} \approx \frac{5}{\tau_{rin}}$ detector signal sampling (signal BW)

 $f_{res} \ge 2n_{\Phi_o} f_{samp}$ flux ramp modulated signal BW (resonator BW)

 $f_n \ge g_f f_{res} = \frac{2R_d g_f n_{\Phi_0}}{\tau}$ microwave tones separation ($g_f \ge 10$)

multiplexing factor

$$n_{TES} = \frac{f_{ADC}}{f_n} \le \frac{f_{ADC} \tau_{rise}}{2 R_d g_f n_{\Phi_0}} \approx \frac{f_{ADC} \tau_{rise}}{200}$$

for fixed $f_{ADC} = 550 \text{MHz}$ and $n_{TES} \approx 30 \leftrightarrow \tau_{rise} \approx 10 \mu \text{s}$ with $f_{samn} = 0.5 \text{MHz}$ \rightarrow check for τ_{R} and $\Delta E...$ A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017 53

HOLMES pixel design and test

- optimize design for speed and resolution
 - ▷ specs @3keV : $\Delta E_{FWHM} \approx 1eV$, $\tau_{rise} \approx 10\mu s$, $\tau_{decay} \approx 100\mu s$
- 2 μm Au thickness for full electron and photon absorption
 - GEANT4 simulation: 99.99998% / 99.927% full stopping for 2 keV electrons / photons
- **side-car** design to avoid TES proximitation and G engineering for τ_{decav} control

Detector testing with homodyne read-out

Detector testing with HOLMES DAQ

ROACH-2 based Software Defined Radio

HOLMES detector design and fabrication

¹⁶³Ho

- TES array fabricated at **NIST**, Boulder, CO, USA
- ¹⁶³Ho implantation at **INFN**, Genova, Italy
- $1 \ \mu m \ Au$ final layer deposited at INFN Genova
- fabrication process definition in progress
- HOLMES **4×16 linear sub-array** for low parasitic *L* and high implant efficiency

Target chamber for absorber fabrication

tests are in progress

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

HOLMES schedule and conclusions

Project Year	2015	20	16	20	17	20	18
Task	S2	S1	S2	S1	S2	S1	S2
Isotope production							
TES pixel design and optimization							
Ion implanter set-up and optimization							
Full implanted TES pixel fabrication						1	
ROACH2 DAQ (HW, FW, SW)							
32 pix array 6mo measurement					-		
Full TES array fabrication							
HOLMES measurement							

HOLMES project status

many technical challenges are being addressed in parallel

- design phase is complete
- $\hfill\square$ ion implanter setting up is in progress
- □ first ¹⁶³Ho implantation coming shortly
- □ spectrum measurements will begin late in 2017

. . .

Worst case scenarios...

¹⁶³Ho production and embedding

¹⁶³Ho production by nuclear reaction

- ► high yield
- ► low by-products contaminations (in particular ^{166m}Ho, $\beta \tau_{\frac{1}{2}}$ =1200y)
- not all cross sections are well known
 - \rightarrow neutron activation of enriched ¹⁶²Er (nuclear reactor)
 - → ¹⁶³Dy(p,n)¹⁶³Ho E_p >10 MeV (direct, low yield → PSI?)
 - \rightarrow ^{nat}Dy(α ,xn)¹⁶³Er and ¹⁵⁹Tb(⁷Li, 3n)¹⁶³Er

¹⁶³Ho Separation from Dy, Er and more ...

- radiochemistry (before and/or after irradiation)
- magnetic mass separation
- resonance ionization laser ion source (RILIS)?
- ¹⁶³Ho embedding in detector absorber
- implantation (+magnetic separation)
- ► Au film deposition for full containment

J.W. Engle et al., NIM B 311 (2013) 131-138 **ECHO** *n* 10¹⁴ n/cm2/s α 40 MeV particle *p* 16 MeV p 24 MeV p 240 µA 80 µA 30 µA natDy ^{nat}Dv ¹⁶²Er (40%) natDv target W/Ta 200mg/cm² "thick" 20g 10¹³⁻¹⁵/ mg ¹⁶²Er **10**¹³ **10**¹⁴ **10**¹⁴ **10**¹⁵ ¹⁶³Ho prod rate [nuclei/h] U. Koester @NuMass 2013 A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

62

rf-SQUID microwave multiplexing

TES read-out: SQUID

- low impedance suitable for multiplexable dc-SQUID magnetometers
- current amplifier configuration $\triangleright \Delta I \rightarrow \Delta \phi \rightarrow \Delta V$
- feedback linearized response

	ECHo	HOLMES	NUMECS					
¹⁶³ Ho production	162 Er (<i>n</i> , γ)	162 Er (<i>n</i> , γ)	Dy (<i>p</i> , <i>nx</i>)					
Absorber	Gold	Gold	Nanoporous gold					
Sensor	Au:Er magnetic	TES Mo/Cu	TES Mo/Cu					
Present status								
ΔE at M1 peak [eV]	12		43 (incl. Γ_{M1})					
$\tau_{\rm rise} [\mu s]$	0.13	_	_					
$A_{\rm EC}$ [Bq]	0.2	—	0.1					
Projected ($E_0 = 2800 \text{ eV}$)								
$N_{\rm det}$	100	1000	4096					
$\Delta E [eV]$	<5	1	—					
$\tau_{\rm rise} [\mu s]$	<1	1						
A _{EC} [Bq/detector]	10	300	100					
$f_{ m pp}$	10^{-6}	3×10^{-4}	—					
t_M [y]	1	3	1					
$\Sigma_{90}(m_{\nu_e})$ [eV]	10	1.5	1					

dal talk di Kathrin Valerius a Neutrino 2016

International competition / 1

Heidelberg (Univ., MPIK), U Mainz,

IIT Roorkee, Saha Inst. Kolkata

U Frankfurt, HU Berlin, ILL Grenoble, PNPI St Petersburg, U Bratislava,

U Tübingen, TU Dresden,

magnetic micro-calorimeter (MMC) arrays with microwave squid multiplexing readout

FOR 2202

ECHO

- fast rise time (~130 ns) and excellent linearity & resolution ($\Delta E \sim 5 \text{ eV}$)
- isotope production: 162 Er(n, γ) 163 Ho offline mass separation

 Phase II: ECHo-1M array of 10⁵ detectors 50 x 2000 pixel x 10 Bq, 2 years: sub-eV sensitivity

P4.038, L. Gastaldo

dal talk di Kathrin Valerius a Neutrino 2016

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

66

International competition / 2

The NuMECS Experiment

Technology

- transition-edge sensors (TES, Mo-Cu bilayer)
- gold foil absorbers with dried solution containing ¹⁶³Ho
- ¹⁶³Ho production by proton irradiation of natural dysprosium

¹⁶³Ho spectrum

- obtained after systematic improvement of absorber production
- still limited statistics (40 hrs, 0.1 Bq) and resolution

K. Valerius, KIT | Direct probes of neutrino mass | NEUTRINO 2016

dal talk di Kathrin Valerius a Neutrino 2016

Beyond spectrometers: Project8 / 1

Beyond spectrometers: Project8 / 2

Project 8 – next goals

- Phase I (2010-2016)
 - Demonstration of CRES method
 - Conversion electron lines from ^{83m}Kr

• Phase II (2015-2017)

- Spectroscopy of continuous T2 spectrum
- Systematics, energy resolution

• Phase III (2016-2020)

10-20 cm³ eff. source volume (1 yr) phased-array antenna sensitivity goal: 2 eV (90% CL)

P4.047, B. VanDevender

Phase IV

Large-scale exp., with atomic tritium source, for sub-eV sensitivity (hierarchy scale)

K. Valerius, KIT | Direct probes of neutrino mass | NEUTRINO 2016

BEFS: Beta Environmental Fine Structure

Modulation of the electron emission probability due to the atomic and molecular surrounding of the decaying nucleus: it is explained by the wave structure of the electron (analogous of EXAFS)

C. Arnaboldi et al., Phys. Rev. Lett. 96 (2006) 042503 (for BEFS in Rhenium: F. Gatti et al. Nature, 397 (1999) 137)

Beta Environmental Fine Structure in 163 Ho?

Resolution limit: LTD vs. ionization detectors

Ionization detectors

- \bullet measure only the energy that goes into ionization ($\sim\!1/3)$
 - ▶ in semiconductors: energy to create an *e*-*h* pair $W_0 \approx 3 \text{ eV} \Rightarrow N_{eh} = E/W_0$
 - ► statistical fluctuations on N_{eh} limit the energy resolution $\sigma_F = \sqrt{F N_{eh}} W_0 = \sqrt{F E W_0}$
 - ▶ in practice: △E_{FWHM} ≈ 115 eV at 6 keV for silicon
- other limitations from electron transport properties (material restriction, purity...)

Cryogenic detectors

- measure the energy that goes into heat (100%)
 - ► no branching ⇒ no statistical fluctuations
 - resolution limit: random energy flow through G
 - ► statistical fluctuations of internal energy $U = \langle U \rangle \pm \Delta U_{rms}$

$$N_{ph} = \frac{\langle U \rangle}{\langle E_{ph} \rangle} = \frac{CT}{k_B T}$$
$$\Delta U_{rms} = \sqrt{N_{ph}} (k_B T) = \sqrt{k_B T^2 C}$$
$$L \text{ mg of Re @ 100 mK}$$
$$C \sim 10^{-13} \text{ J/K} \Rightarrow \Delta U_{rms} \sim 1 \text{ eV}$$
HOLMES array read-out: rf-SQUID µwave mux

Ramp demodulation

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017

Rise time pile-up

2 pulses with:

- $\tau_{rise} = 1.5 \text{ ms}$
- τ_{decay} = 10 ms
- $A_2/A_1 = 0.5$

 $A(t) = A \left[e^{-t/\tau_{decay}} - e^{-t/\tau_{rise}} \right]$

HOLMES signal processing and in-line analysis

• normal data taking (permanent RAID storage)

* hypothetical configurations

- save only *n*-tuples (6 × 4 byte words) *
- ▶ high threshold ($E_{th} \approx 2.022 \text{ keV}$, $E_{M1} = 2.041 \text{ keV}$, $Q_{EC} = 2.8 \text{ keV}$, 21% of spectrum) *
- about 150TB in 3 years (un-compressed)
- periodic minimum bias samples (temporary storage)
 - tune parameters for real time pulse processing
 - full waveform (512 samples at 12 bit) for immediate off-line analysis *
 - ▶ full spectrum → 20TB/day
 - combined with high threshold data
- lower threshold is possible with compression

ROACH2 FW real-time
pulse processing:
 threshold cut
 ...
SERVER quasi real-time
pulse processing:
 OF analysis → n-tuples
 pile-up detection
 ...

Low energy background sources / 2

A. Nucciotti, PSI, Villigen (CH), May 23rd, 2017