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163Ho electron capture
163Ho + e- → Dy* + νe

Q~2.8keV, capture only from shell ≥ M1 
De Rujula & Lusignoli, Phys. Lett. B 118 (1982) 429
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same factor as β decay 
(total de-excitation energy Ec instead of Ee)

Breit-Wigner shape

• calorimetric measurement of Dy* de-excitation 
•“good” event rate and ν mass sensitivity depends on Q-value and 
capture peak position (roughly ~1/(Q-EM1)3) 

• τ1/2 ~ 4570 years → few active nuclei needed

expected ν 
mass effect
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The                     project in a nutshell

• Direct neutrino mass measurement with statistical sensitivity around 1 eV 

• Usage of Transition Edge Sensor (TES) based micro-calorimeters with 163Ho 
implanted Au absorber: 
•  6.5 x 1013 nuclei / det 
•  AEC ~ 300 Bq / det 
•  ΔE ~ 1 eV, τ ~ 1-10 μs τr ~ 10 μs

τr ~ 5 μs
τr ~ 3 μs
τr ~ 1 μs

exposure: 1000 det x 3 years

AEC = 10 Bq / det 30 Bq / det 100 Bq / det 300 Bq / det

sub-ev 
sensitivity 

region:  
Nev >> 1013

• Should prove the technique 
potential and scalability by 
evaluating EC spectral shape 
and systematic errors

• 2 steps approach: 
•  64 channels prototype,  

•  tm = 1 month, mν < 10 eV 
• 1000 channels array: 

• 6.5 x 1016 total nuclei  
• O(1013) events / year 
• mν ~1 eV
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Complex pile-up spectrum: end-point is dominated by ((Q-EC)2 - mν2)1/2 
but expected distortions due to pile-up:

Q=2.80keV
fpp=10-4In order to reduce pile-up: 

• trade-off between activity and 
statistic; 

• detector with fast signal rise time 
τr ; 

• pile-up resolving algorithm.

Pile-up occurs when multiple events arrive within the resolving time of 
the detector. In a first approximation, fraction of unresolved pile up is 
given by fpp = τ x AEC.

Npp(E) = fpp NEC(E) ⊗ NEC(E)

163Ho electron capture
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163Ho production
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163Ho does not exist in nature: it is 
produced from 162Er neutron activation at 
nuclear reactor: 
• 162Er (n,γ) 163Er,  σtherm ~ 20 b 
• 163Er + e- → 163Ho + νe  (τ1/2 ~ 75 m) 
• high yield 

•~3x1012 163Ho nuclei/mg162Er/h 
• requires 162Er enrichment and oxide 

chemical form (Er2O3) 

It is a “dirty” process: many other isotopic 
species are created together with 163Ho. 
Worst one: 
• 165Ho (n,γ) 166mHo (β, τ1/2~ 1200 years) 
• from Ho contamination or 164Er (n,γ) 
• need high purification of sample: 

• radiochemical separation: 
• removes everything but Ho; 

• mass separation with magnetic dipole.
In collaboration with 

ILL (Grenoble, FR) 

Paul Scherrer Institute (Villigen, CH)
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•  Enriched Er2O3 samples irradiated at ILL (Grenoble) and 
post-processed at PSI: 
• 25 mg, 55 days irradiation → A(163Ho) ~ 5 MBq 
• 150 mg, 50 days irradiation → A(163Ho) ~ 38 MBq 
• 540 mg, 50 days irradiation → A(163Ho) ~ 120 MBq 

•  Ho radiochemical separation is performed via ion-
exchange chromatography at PSI. 
• Expected 166mHo contamination fraction: ~10-3 
• Currently available activity is already enough for 

HOLMES purposes.

163Ho purification

S. Heinitz et al. PLOS ONE 13(8):e0200910
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163Ho mass separation
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163Ho mass separation

The layout currently installed in Genova’s 
lab includes:  

•  an argon Penning sputter ion source 
with a 50kV acceleration section, 
corresponding to O(10 nm) 
implantation depth; 

•  a magnetic dipole mass analyzer, 
field up to 1.1 T; expected 163/166 
a.m.u. separation > 5 σ; 

•  a Faraday cup and a slit. 
The target chamber, which allows 
simultaneous co-evaporation of Au will be 
installed soon. Co-evaporation is needed: 
• to fully encapsulate the source in the 

absorber and 
• because after a while 163Ho 

concentration in the absorber saturates. 
The machine will be upgraded after first 
64 detector arrays production.

Target chamber SRIM simulation
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Ion implanter calibration and test
The machine is calibrated using peaks from Cu, Au 
and Mo (from sputter target and anode). A small 
misalignment has been measured and taken into 
account. Mass resolving power has been evaluated 
from Cu and Mo peaks and extrapolate to be 18 mm 
at 163/166 a.m.u.  
First tests performed with sputter target made with 
bulk Cu disk with a thin layer of 165Ho(OH)3 
deposited via molecular plating: 
• clear peak at 165 a.m.u. BUT source efficiency is 

still quite low: 
• current O(50nA) sustained for few minutes… 
• Maybe 165Ho(OH)3 dissociates in different 

compound? (HoO, Ho(OH)…) 
• Now testing: 

•  Different Ho compounds to be included in 
sputter target: 
• Ho(CH3COOH), HoPO4, Ho(NO3)3 

•  Different techniques for sputter target 
production: 
• Sintered target (mixture of Ho/Ti/Ni/Sn)

Mo spectrum

165Ho  
expected 
6483 G

M. De Gerone et al., LTD 2021
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TES based µ-calorimeters

Transition edge sensors based µ-calorimeters: 
• absorber coupled to a superconductive 

sensor (thermometer) kept in the transition 
region; 

• energy release in the absorber produces a 
temperature increase in thermometer and 
then a change in TES resistance; 

• Exploit the steepness of R(T) of a 
superconductor kept in its transition to 
measure ΔE: 
• state of art energy resolution (O(eV)); 
• multiplexing readout scheme available; 
• limited dynamics: design has to be 

optimized for a specific application. 
• ΔTmax = E/C, C = thermal capacity 
• ΔT(t) = E/C e-t/τ , τ = C/G, G is the thermal 

conductance
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Holmes detector design
• TES design, production and preliminary test is done @NIST 
•  2 μm Au thickness for full absorption of electrons and photons 
•  “side car” configuration to avoid TES proximization and allow G engineering for a better τ 

control 
• Design optimized to obtain best compromise between resolutions and time response. 
Target performances (@ 3 keV): 

•  ΔEFWHM O(eV) 
•  τrise ~ 10 μs 
•  τdecay ~ 100 μs
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Holmes Detector production

Detector fabrication is done with a multi-step procedure: 
1) TES array is produced @NIST up to first 1 μm Au layer; 
2) 163Ho implantation and Au co-evaporation; 
3) 1 μm Au final layer is deposited over Ho implantation (“complete” the absorber) 
4) membrane release with KOH or DRIE process  

4 x 16 linear array for implantation optimization and low parasitic L

chip width: 5mm
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Multiplexed readout

•  DC-biased TES inductively coupled to a dissipation less RF-SQUID 
•  RF-SQUID inductively coupled to a high-Q superconducting λ/4 resonator 
•  Change in TES current ⇒ change in the input flux to the SQUID 
•  Change in the flux to the SQUID ⇒ change of resonance frequency and phase 
•  Each micro-resonator can be continuously monitored by a probe tone
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Array readout: rf-SQUID μwave mix

common SQUID
modulation line

λ/4 resonators coupled to common 
feedline tuned at different 
frequencies for multiplexing

common TES 
bias line

• By coupling many resonators to a single microwave feedline it is possible to perform the readout 
of multiple detectors 
• Sensors are monitored by a set of sinusoidal probe tones (frequency comb) 
• The signal is reconstructed from the phase shift of the SQUID oscillation (solid line), with respect 
to a reference sine function (dotted line). 
• The ramp induced a controlled flux variation in the rf-SQUID, crucial to linearize the response 
• Large multiplexing factor (>100), limited by digitizer bandwidth

D. T. Becker at al., 
JINST 14 (2019) 
10, P10035
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Pixel testing with HOLMES DAQ

• Tested different u-calorimeter geometries 
• Produced at NIST 
• Not yet implanted with Ho 
• Sources: 55Fe + fluorescence sources 
(range 1.6 - 6 keV) 
• Energy resolution ~ (4.5 ± 0.3) eV 
• Best performing detector: (4.15 ± 0.10) eV 
@Mn Kɑ

A. Giachero et al., IEEE Trans.Appl.Supercond. 31 (2021) 5, 2100205



M. De Gerone, LomCon 2021 16

Conclusion and prospects

• The HOLMES experiment aims to perform a direct neutrino mass 
measurement with calorimetric technique exploiting the 163Ho EC decay. 

• Thanks to its low Q-value this isotope seems to be a good candidate for 
such a measurement. 

• Some experimental challenges: 
• Embedding high activity into detectors arrays, managing possibile 
pile-up issues; 

• Design and produce detectors arrays with suitable resolutions; 
• Implement a multiplexing readout scheme. 
• Optimization studies are ongoing. 

• We expect to have the first data from implanted detectors by fall 2021.



Back up slides



M. De Gerone, LomCon 2021

Direct ν mass measurement
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Kinematics of weak decay with ν 
emission: 

• low Q nuclear β decays (3H, 187Re, 
163Ho…) 

• model independent: only E, p 
conservation  

• ν mass appears as a distortion in 
the Kurie plot

2 different approaches: 
• spectrometry: source placed outside the 

detector (KATRIN approach) 
• calorimetry: source embedded inside the 

detector (ECHO, MARE, HOLMES 
approach) ⇒ low T µ-calorimeters

ECHO MARE

KATRIN
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Spectrometry vs calorimetry
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General requirements for a ν mass experiment: 
•  High statistics near the end point  

• low Q-value (stat ~1/Q3) 
• high activity/efficiency of the source 

• Energy reso order ~eV or below (comparable with mν) 
• S/N ratio 
• small systematic effects

Spectroscopy: source ⊄ detector 
•high statistics  
•high energy resolution (below eV) 

•systematics due to the source 
(energy loss) 

•systematics due to decay to 
excited states 

•background

Calorimetry: source ⊂ detector 
•no backscattering 
•no energy loss in source 
•no solid state excitation 
•no atomic/molecular final state 

effects 
•good energy resolution (~eV) 
• limited statistics 
•systematics due to pile-up 
•background
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163Ho separation from Dy, Er and others… 
•radiochemistry (before/after activation process) 
•magnetic mass separation 

Ho2O3 thermoreduction in Knudsen cell provides a metallic sample for 
the implantation: 

•Ho2O3 + Y(met) → Ho(met) +  Y2O3 @2000K 
•First test already performed in Genova

Ho production and purification

~80% Ho (met)
~20% Ho (oxyde)
+impurities from Y
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Source of background
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• Environmental γ radiation 
• Compton interactions, photoeletric 

interactions with p.e. escape 
•  Fluorescent X-rays and X-ray escape 

line 
• Cosmic rays 

• GEANT4 simulation for CR at sea 
level (only muons) 

•  Au pixel 200 x 200 x 2 μm3 → bkg 
~ 5 x10-5 c/eV/day/det (0 - 4 keV)

•  Internal radionuclides 
• 166mHo (β−, τ½ = 1200 y, produced along with 163Ho) 
•  Au pixel 200 x 200 x 2 μm3 → bkg ~ 0.5 c/eV/day/det/Bq(166mHo) 
• A(163Ho) = 300Bq/det (~ 6.5×1013 nuclei/det)  
• if bkg(166mHo) < 0.1 c/eV/day/det 

•  → A(163Ho)/A(166mHo) > 1500 
•  → N(163Ho)/N(166mHo) > 6000 


