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▪ Neutrino mass

▪ Direct and calorimetric measurement of mn with 163Ho

▪ HOLMES

Experimental statistical sensitivity

Experiment design and baseline

Technical tasks status

▪ Conclusions
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Absolute neutrino mass

4

m
b
b

(e
V

)
-
0
n
b
b

mb (eV) – single b decay

excluded

ex
cl

u
d

ed

how to get here?

Katrin



163Ho electron capture
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163Ho decay via EC from shell ≥ M1, with QEC ~ 2.8keV

Proposed by A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

•calorimetric measurement of the Dy atomic de-excitation (mostly non-radiative)

•rate at the end point depends on (Q – EM1
): the proximity to M1 resonance peak enhances the statistics at the end point 

(i.e. sensitivity on mn)

•t1/2 ~ 4570 years: few nuclei are needed (2x1011 163Ho nuclei = 1 Bq)

163Ho + e- 163Dy*+ne

Simulation with 
single hole 
excitations



Pile-up
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• no direct calorimetric measurement of Q (end-point) so far

• pile-up is a major systematics of the calorimetric approach

➢ Npp(E)=fppNEC(E)   NEC(E), with fpp≈AECtR

Single hole excitations
Q = 2800 eV
fpp = 10-4

AEC activity/detector
tR time resolution (~ rise time)

Impairing effect on the end-
point measurement

• fast detectors
• limited activity/det

parallelization over 
large number of 
detectors



Pile-up/2
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• shake-up/shake-off due to two holes excitations

➢ n-hole possible, but less probable

➢ energies and probabilities are still uncertain

Double hole excitations
Q = 2800 eV

fpp = 10-4

only shake-up

more complex structure at the 
end-point might require a fpp even 
lower than 10-4



Statistical sensitivity
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MC simulation
• Q = 2.8 keV
• DE = 1 eV
• tR = 1 ms

M. Galeazzi et al., arXiv:1202.4763v2
A. Nucciotti, Eur. Phys. J. C (2014) 74:3161

∝
4 Τ1 𝑁𝑒𝑣

• A = 1 Bq, fpp = 10-6

• NdettM ≈ 2x109 det · y
• A = 1000 Bq, fpp = 10-3

• NdettM ≈ 108 det · y

to obtain S(mn) ≤ 0.1 eV

Detectors:
➢ time resolution tR = 1ms
➢ DE = 1eV @ 2.8 keV
➢ Extremely large detector array!!



Statistical sensitivity vs pixel activity
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DE = 3 eV, tR = 3 ms
DE = 1 eV, tR = 1 ms

1000 channels, tM = 3 years

higher counting rates provide higher sensitivity
➢ robustness against background
➢ b ≤ 0.1 counts/eV/day/det (flat background)

HOLMES



HOLMES (ERC-Adv. Grant 340321) PI:S.Ragazzi
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Goals:
➢ Neutrino mass determination with a sensitivity as 

low as ~ 1 eV
➢ proof potential and scalability of the approach
➢ precise calorimetric determination of Q
➢ systematic errors assessment

Two steps approach:
• 64 channels mid-term prototype, tM = 1 month 

(mn < 10 eV)
• full scale: 1000 channels, 3x1013 events collected 

in 3 years
• 6.5x1016 163Ho nuclei (≈18 mg)

B. Alpert et al., Eur. Phys. J. C,  (2015) 75:112
http://artico.mib.infn.it/holmes

5 years project started on Feb. 1st 2014

MonteCarlo with 1000 detectors x 3 years
AEC =  10 c/s/det 30 c/s/det 100 /s/det 300 c/s/det

HOLMES

tR≈10ms

tR≈5ms

tR≈3ms

tR≈1ms



163Ho production
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162Er(n,g)163Er                        sthermal ≈ 20b
163Er         163Ho + ne t½

EC ≈ 75min

➢ ILL nuclear reactor @ Grenoble: high thermal n flux 1.3x1015 n/cm2/s

➢ cross section burn up 163Ho(n,g)164Ho not negligible (~ 200 b)

➢
165Ho(n,g) (mostly from 164Er(n,g)) → 166mHo, b-, t½ = 1200 y, Q = 5.97 keV

➢ A(163Ho)/A(166mHo) = 100 ~ 1000

➢ chemical pre-purification and post-separation at PSI (Villigen, Switzerland)

➢ HOLMES needs ~ 200 MBq of 163Ho*

*depends on the actual global embedding process efficiency



163Ho production/2
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➢ So far three batches* of enriched Er2O3 irradiated @ILL, pre/post processed @PSI and analyzed with ICP-OES, NAA 
(PSI) and ICP-MS (PSI+LNGS):

• 18 mg (enriched ~28%) irradiated for 55 days @ILL        5 MBq (6 kBq) of 163Ho (166mHo)

• 120 mg (enriched ~26.5%) irradiated for 53 days @ILL        23 MBq (37 kBq) of 163Ho (166mHo)

• 544 mg (enriched ~25%) irradiated for 50 days @ILL. Expected in 2018: 108 MBq (200 kBq) of 163Ho (166mHo)

➢ total of ~108 MBq (243 kBq) of 163Ho (166mHo): enough for R&D and 500 pixels

➢ Ho radiochemical separation with ion-exchange resins in hot-cells at PSI

• efficiency ≥ 79%

*from INFN, Uni Milano-Bicocca and CENTRA (Lisbon)



Background
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• environmental g radiation

• g, X and b from surroundings

• cosmic rays

➢ GEANT4 simulation for cosmic rays (muons) at sea level

➢ 200x200x2 mm3 Au absorber produce bkg ≈ 5x10-5 c/eV/day/det (0 – 4 keV)

MIBETA experiment: 300x300x150 mm3 AgReO4 absorber bkg (2 – 5 keV) ≈ 1.5x10-4 c/eV/day/det

• internal radionuclides (166mHo)

➢ GEANT4 simulation for 166mHo (b-, Q = 1856 keV, t1/2 = 1200 y)

➢ 200x200x2 mm3 Au absorber produce a bkg ≈ 10-11 c/eV/day/det/(166mHo nucleus)

if A (163Ho) = 300 Bq and requiring bkg(166mHo) < 0.1 c/eV/day/det

N(163Ho)/N(166mHo) > 6000

A(163Ho)/A(166mHo) > 1500

HOLMES baseline: 163Ho pile-up rate 
<rpp> = A·fpp/2Q = 300 Bq x 3·10-4/2Q = 

1.5 c/eV/day/det



Ion implanter
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4 mm FWHM

163

162

calculated beam size

• extraction voltage 30-50 kV
• 10-100 nm implanting depth
• 163Ho/166mHo separation better than 105

See G. Gallucci (Tuesday talk)
M. De Gerone (poster)

*delivered in July 2017
**delivered in January 2018 



Ion source sputter target production
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▪ sputter target for ion-implanting has to be in metallic form for possible extraction 
efficiency loss

▪ enriched Er2O3 Ho2O3

▪ thermoreduction/distillation in furnace:
Ho2O3 + 2Y(met)        2Ho(met) + Y2O3 @T > 1600 °C

▪ distillation efficiency ≈ 70% (preliminary)

See G. Gallucci (Tuesday talk)
M. De Gerone (poster)

evaporated metallic holmium



Ion source sputter target production/2

M. Faverzani, ECT*, Trento (Italy), March 26 2018 16

▪ sputter target for ion-implanting has to be in metallic form for possible extraction efficiency loss
➢ work in progress to produce the sputter target 
➢ sintering of Ho with other metals
➢ production of targets with different metals to test the implanting efficiency

t
a
r
g
e
t

Ho



HOLMES detectors & readout
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• transition edge sensors

➢ good energy resolution: few eVs @ Q-value

➢ compatible with ion-implanting

➢ detectors intrinsically fast O(100 ns) – slowed down to ~ 20 ms for bandwidth limitations

➢ effective time resolution better than rise time        pile-up discrimination

➢ 300 Hz/pixel: excess of heat capacity? Degradation of detector performances? To be investigated…

• microwave multiplexing 

➢ rather simple readout scheme

➢ compatible with fast sampling rate & intrinsic energy resolution

• DAQ based on Software Defined Radio

➢multiplexing factor limited by bandwidth of the ADC



Detectors
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• Transition Edge Sensors: exploit the strong dependence of R vs T of a superconductor kept in its transition

• 163Ho ion-implanted gold absorber thermally coupled to the sensor

• “side-car” geometry to prevent proximity effect

• absorber thickness determined by stopping power of electrons and photons

• fast detector response for high counting rate

➢ signal rise time determined by electrical cut-off (L/R)

➢ signal decay time (at the first order) set by C/G: large G to reduce dead time

163Ho ion-implanted 
gold absorber

copper structure intended to 
increase the perimeter (and 

hence the G)

TES

SiNx

membrane

✓ production @NIST (Boulder, CO)
✓ test at NIST and Milano
➢ ion-implanted in Genova
➢ production completion in 

Genova+Milano

See E. Ferri (Wednesday talk)



Detectors testing
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• tested several geometries

• Not implanted with Holmium!

• 55Fe (5.9 keV) + fluorescence source (Ca – 3.7 keV; Cl – 2.6 keV; Al – 1.5 keV)

• selected stray inductance to obtain tR ≈ 10 ms

DE = 4.74 ± 0.14 eV

E [keV] DE [eV]

1.49 4.6

2.62 5.3

3.69 4.6

test @Milano with fsamp = 500 kHz

See E. Ferri (Wednesday talk)



Gold absorber - simulations
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Geant4 + LowEnergyEM MC simulation: 107 events

2 keV electrons
2 mm: 99.9998% fully absorbed

2 keV photons
2 mm: 99.927% fully absorbed



Detectors fabrication
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• TES originally fabricated at NIST, Boulder, CO, USA
• 163Ho implantation at INFN, Genova, Italy
• 1 mm Au final layer deposited at INFN, Genova, Italy
• final fabrication process: release of the membrane with KOH in Milano or DRIE
• HOLMES 4 x 16 linear sub-array for low parasitic L and high implant efficiency



Target chamber
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detectors

163Ho beam

depth (Å)

~ 2 Bq

• 163Ho concentration in absorbers saturate because 163Ho 
sputters off Au from absorber

• effect compensated by Au co-evaporation (also for heat 
capacity reasons)

• final 1 mm Au layer deposited in situ to avoid oxidation



Target chamber/2
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gold deposition rate ≈ 100 nm/hour

(tunable with RF power or with Ar energy)



Microwave multiplexing readout
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TESs readout with microwave multiplexing (produced by NIST)

• each sensor inductively coupled to a RF-squid part of a l/4 resonator
• a comb of signals probe the resonators at their characteristic resonant frequency

E dTTES dITES dfsquid dfresonator

• a ramp signal added to the squids in order to linearize the response

K. D. Irwin and K. W. 
Lehnert, Appl.Phys.Lett.,
85:2107, 2004

dj

See E. Ferri (Wednesday talk)



Microwave multiplexing readout
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• 33 resonances/chip over 500 MHz
• BW = 2 MHz per resonator
• separation between resonances 14 MHz (to 

prevent crosstalk)
• depth greater than 10 dB

• SQUID equivalent noise: ≤ 2 mf0/ 𝐻𝑧

See E. Ferri (Wednesday talk)



Cryogenic set-up
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dry dilution refrigerator



DAQ with the ROACH2
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• Software Defined Radio with the open system 
ROACH2 (Casper collaboration)

• ADC BW 550 MHz
• real time pulse reconstruction

Multiplexing factor proportional to the target rise 
time: nTES ≈ 3.4·10-6tR

requiring tR = 10 ms

nTES ≈ 34

At the moment nTES is limited by the readout power 
of the RF probe signals



Detector time resolution (MC simulations)
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pile-up spectrum with a time resolution tR: 

𝑁𝑝𝑝 𝐸 = 𝐴𝐸𝐶 0׬
∞
𝜏𝑅 𝐸, 𝜖 𝑁𝐸𝐶 𝜖 𝑁𝐸𝐶 𝐸 − 𝜖 𝑑𝜖 pulse shape and noise from NIST TES model, sampled with 

fsamp, record length, and n bit

E1 + E2 ∈ 2.4 ÷ 2.9 keV (from 163Ho 
spectrum), ∆𝑡 ∈ 0 ÷ 10 ms

pile-up detection algorithms for fsamp = 0.5 MHz, trise ≈ 20 ms:

• Wiener Filter        tR ≈ 3ms
• Single Value Decomposition       tR ≈ 1.5 ms



Signal processing
• normal data taking (hypothetical configuration)

Save only n-tuples (6 x 4 byte words)

high threshold (Eth ≈ 2.022 keV < EM1
, 21% of spectrum)

➢ about 150 TB 3 years of data-taking

• periodic minimum bias samples (temporary storage)

 tune parameter for real time pulse processing

 full waveform for immediate off-line analysis (512 samples x 12 bits)

 full spectrum         20 TB/day

ROACH2 real-time
pulse processing + threshold cut

Server quasi real-time
pulse processing:
• OF analysis
• pile-up detection
• …



Schedule
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Year 2018 2019

Task S1 S2 S1 S2

istope production

target chamber set-up and 
optimization

ion implanter set-up and 
optimization

full implanted TES pixel 
fabrication

6 months measurement
(64 pixels)

Project status:
• TES detectors and DAQ ready
• ion implanting and target chamber are being setting up
• first spectrum measurement with 64 channles will start in mid 2019

➢ 1 month of data-taking         Smn
≈ 10 eV


