

Angelo Nucciotti

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

on behalf of the HOLMES collaboration

Castello di Trento ("Trint"), watercolor 19.8 x 27.7, painted by A. Dürer on his way back from Venice (1495). British Museum, London

Determination of the absolute electron (anti-)neutrino mass Trento, April 4 - 8, 2016

- Absolute neutrino mass
- In 163 Ho EC decay for direct neutrino mass measurements
- HOLMES experiment
 - sensitivity MC simulations
 - experiment design
 - technical task development status
- Conclusions

HOLMES collaboration

Univ. Milano-Bicocca INFN Milano-Bicocca

C.Brofferio G.Ceruti M.Faverzani E.Ferri A.Giachero M.Maino A.Nucciotti G.Pessina A.Puiu S.Ragazzi M.Sisti F.Terranova

INFN Genova

M.Biasotti V.Ceriale D.Corsini M.De Gerone E.Fumagalli F.Gatti A.Orlando L.Parodi G.Pizzigoni F.Siccardi

INFN Roma

M.Lusignoli

INFN LNGS S.Nisi NIST B.Alpert D.Becker D.Bennett J.Fowler J.Gard J.Hays-Wehle G.Hilton J.Mates C.Reintsema D.Schmidt D.Swetz J.Ullom L.Vale **PSI** R.Dressler S.Heinitz D.Schumann

CENTRA-IST

M.Ribeiro-Gomes

Caltech/JPL

P.K.Day

ILL U.Koester

The Challenge: absolute neutrino mass

Electron capture end-point experiment / 1

¹⁶³Ho + e⁻ \rightarrow ¹⁶³Dy* + ν_e

electron capture from shell \ge M1

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- Q = 2.8 keV (recent measurement with Penning trap)
 - ▶ rate at end-point and v mass sensitivity depend on $Q E_{M1}$
- $\tau_{\frac{1}{2}} \approx 4570$ years \rightarrow few active nuclei are needed (2×10^{11 163}Ho nuclei \leftrightarrow 1Bq)

Electron capture end-point experiment / 2

- no direct calorimetric measurement of Q (end-point) so far
- complex pile-up spectrum
 - $\succ N_{pp}(E) = f_{pp}N_{EC}(E) \otimes N_{EC}(E) \text{ with } f_{pp} \approx A_{EC}\tau_{R}$

M. Galeazzi et al., arXiv:1202.4763v2 A. Nucciotti, Eur. Phys. J. C (2014) 74:3161

Electron capture end-point experiment / 3

- shake-up/shake-off → double hole excitations
 - n-hole excitations possible but less probable
 - authors do not fully agree on energies and probabilities —
- even more complex pile-up spectrum
 - ▶ it may be worth keeping f_{pp} smaller than 10⁻⁴

A.De Rújula, arXiv:1305.4857 R.G.H.Robertson, arXiv:1411.2906 A.Faessler et al., PRC 91 (2015) 45505

Electron capture end-point experiment / 4

including 2-hole shake-off processes → A. De Rújula

 $^{163}\text{Ho} \rightarrow ^{163}\text{Dy}^{\text{H1 H2}} + e^{-} + \nu_{a}$

- dominate rate at end-point
 - ► optimistic: factor ~40 increase (A.De Rújula and M. Lusignoli, arXiv:1601.04990)
 - no analytic description of spectral shape at end-point
- make pile-up less important

9

Statistical sensitivity: shake-off processes

Beta Environmental Fine Structure in 163 Ho?

goal

- neutrino mass measurement: m_v statistical sensitivity as low as 0.4 eV
- prove technique potential and scalability:
 - ► assess EC spectral shape
 - ► assess systematic errors

baseline

- TES with implanted ¹⁶³Ho
 - ► 6.5×10¹³ nuclei per pixel
 → 300 dec/sec
 - ► ΔE≈1eV and τ_R≈1µs
- 1000 channel array
 - ▶ 6.5×10^{16 163}Ho nuclei
 → ≈18µg
 - ► 3×10¹³ events in **3 years**

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112 http://artico.mib.infn.it/holmes

erc

HOLMES design: more MC simulations...

Statistical sensitivity $\Sigma(m_v)$ dependencies from MC simulations

- strong on statistics $N_{ev} = A_{EC} N_{det} t_{M}$: $\Sigma(m_v) \propto N_{ev}^{-1/4}$
- strong on rise time pile-up (probability $f_{pp} \approx A_{EC} \tau_{R}$)

weak on energy resolution ΔE

 t_{M} measuring time N_{det} number of detectors A_{EC} EC activity per detector τ_{R} time resolution (~rise time)

Statistical sensitivity and single pixel activity

high activity \rightarrow robustness against (flat) background A=300Bq \rightarrow b< \approx 0.1 counts/eV/day/det

A. Nucciotti, ECT*, Trento (Italy), April 4th-8th, 2016

15

Low energy background sources

- \bullet environmental γ radiation
- γ , X and β from close surroundings

cosmic rays

- GEANT4 simulation for CR at sea level (muons)
- ▷ Bi pixel 200×200×3 μ m³ → *bkg* ≈ 5×10⁻⁵ c/eV/day/det (0 4 keV)

internal radionuclides

- ▷ GEANT4 simulation for ^{166m}Ho (β^- , $\tau_{\frac{1}{12}}$ = 1200 y, produced along with ¹⁶³Ho)
- ▷ Bi pixel 200×200×3 µm³ → bkg≈ 10⁻¹¹ c/eV/day/det/(^{166m}Ho nucleus)
- bkg ≈ 0.5 c/eV/day/det/Bq(^{166m}Ho)
- $P A(^{163}Ho) = 300Bq/det: for bkg(^{166m}Ho)<0.1 c/eV/day/det$
 - $\rightarrow N(^{163}\text{Ho})/N(^{166m}\text{Ho}) > 6000$
 - $\rightarrow A(^{163}Ho)/A(^{166m}Ho) > 1500$

MIBETA experiment with 300×300×150 μm³ AgReO₄ crystals bkg(2..5keV)≈1.5×10⁻⁴ c/eV/day/det

HOLMES experiment design

- design mostly driven by read-out bandwith requirements
 - TES microwave multiplexing with rf-SQUID ramp modulation + Software Defined Radio (SDR)

 $\int \frac{1}{2} \int \frac{$

 $f_{samp} \ge \frac{\kappa_d}{\tau_{rin}} \approx \frac{5}{\tau_{rin}}$ detector signal sampling (signal BW)

 $f_{res} \ge 2n_{\Phi_o} f_{samp}$ flux ramp modulated signal BW (resonator BW)

 $f_n \ge g_f f_{res} = \frac{2R_d g_f n_{\Phi_0}}{\tau}$ microwave tones separation

multiplexing factor

$$n_{TES} = \frac{f_{ADC}}{f_n} \le \frac{f_{ADC} \tau_{rise}}{2 R_d g_f n_{\Phi_0}} \approx \frac{f_{ADC} \tau_{rise}}{200}$$

for fixed $f_{ADC} = 550MHz$ and $n_{TES} \approx 30 \leftrightarrow \tau_{rise} \approx 10 \mu s$ with $f_{samp} = 0.5MHz$ → check for τ_R and ΔE... A. Nucciotti. ECT*. Trento (Italy), April 4th-8th, 2016 17 • for subsequent (Δt) events with energy E_1 and E_2 : time resolution $\mathbf{\tau}_{\mathbf{R}} = \mathbf{\tau}_{\mathbf{R}}(E_1, E_2)$

$$N_{pp}(E) = A_{EC} \int_{0} \tau_{R}(E, \epsilon) N_{EC}(\epsilon) N_{EC}(E-\epsilon) d\epsilon$$

- Montecarlo pile-up spectrum simulations
 - ▷ event pairs with $E_1 + E_2 \in [2.4 \text{ keV}, 2.6 \text{ keV}]$ (drawn from ¹⁶³Ho spectrum), $\Delta t \in [0, 16\mu s] *$
 - \triangleright pulse shape and noise from NIST TES model, sampled with f_{sampl} , record length, and *n* bit
 - process pulses with pile-up detection algorithms:
 - Wiener Filter WF (→ E. Ferri) or Single Value Decomposition SVD (→ B. Alpert)
- evaluate effective time resolution τ_{eff} from pile-up detection efficiency $\eta(\Delta t)$

HOLMES pixel design

- optimize design for speed and resolution \rightarrow J.Hays-Wehle
 - ▷ specs @2.5keV : $\Delta E_{FWHM} \approx 1eV$, $\tau_{rise} \approx 10\mu s$, $\tau_{decay} \approx 100\mu s$ (* exponential time constants)
- 2 μm Au thickness for *full* electron and photon absorption
 > GEANT4 simulation: 99.9998% / 99.927% full stopping for 2 keV electrons / photons
- side-car design to avoid TES proximitation and G engineering for τ_{decav} control
- define process for ¹⁶³Ho implantation vs. excess heat capacity
 ¹⁶³Ho

• tests at NIST are in progress

- preliminary measurements agree with model predictions:
- ▷ $\Delta E_{FWHM} \lesssim 4 \text{ eV}, \ \tau_{rise} \approx 6 \ \mu s$ (with $L=38 \text{nH} \rightarrow \text{to be slowed}$), $\tau_{decay} \approx 130 \ \mu s$ (tunable)
- → J.Hays-Wehle

Stopping EC radiation in TES absorber / 1

Stopping EC radiation in TES absorber / 2

10⁷ events

A. Nucciotti, ECT*, Trento (Italy), April 4th-8th, 2016

HOLMES detector array fabrication

- TES array fabricated at **NIST**, Boulder, CO, USA
- ¹⁶³Ho implantation at INFN, Genova, Italy
- 1 μm Au final layer deposited at INFN Genova
- fabrication process details under investigation
 - \triangleright ion implant before/after Si₂N₃ membrane release
- HOLMES **4×16 linear sub-array** for low parasitic *L* and high implant efficiency

¹⁶³Ho production by neutron activation

HOLMES needs ≈200MBq of ¹⁶³Ho

¹⁶²Er (n,
$$\gamma$$
) ¹⁶³Er $\sigma_{\text{thermal}} \approx 20b$
¹⁶³Er \rightarrow ¹⁶³Ho + ν_{e} $\tau_{\frac{1}{1/2}} \approx 75$ min

→ U.Koester

- high yield (σs must be checked)
 - ▶ ILL reactor (Grenoble, France): thermal neutron flux 1.3×10¹⁵ n/cm²/s
 - ► \approx 270 kBq(¹⁶³Ho)/mg(¹⁶²Er)/week at ILL (\rightarrow 100mg(¹⁶²Er) for 7 weeks \rightarrow \approx 200MBq of ¹⁶³Ho)
- burn up ¹⁶³Ho(n,γ)¹⁶⁴Ho: cross section not known
 - ► may reduce yield: $\sigma_{\text{burn-up}} \approx 100b \rightarrow 100 \text{mg}(^{162}\text{Er})$ for 7 weeks $\rightarrow \approx 190 \text{MBq}$ of ^{163}Ho
- ¹⁶⁵Ho(n, γ) (mostly from ¹⁶⁴Er(n, γ)) → ^{166m}Ho, $\beta \tau_{\frac{1}{2}}$ =1200y
 - ▶ 100mg(¹⁶²Er) for 7 weeks → order of 100kBq of ^{166m}Ho (depends on ¹⁶⁴Er abundance)
- analysis of 2 samples irradiated at ILL with ICP-MS at LNGS is in progress
- **HOLMES needs** \approx 500mg Er₃O₂ enriched at 30%
- chemical pre-purification and post-separation at PSI (Villigen, Switzerland)
 A. Nucciotti, ECT*, Trento (Italy), April 4th-8th, 2016 23

HOLMES source chemical processing

- enriched Er₂O₃ samples* irradiated at ILL and pre-/post-processed at PSI
 - ► 25 mg irradiated for 55 days $\rightarrow A(^{163}Ho)_{theo} \approx 10MBq (A(^{166m}Ho)_{meas} \approx 10kBq)$
 - ► 150mg irradiated for 50 days $\rightarrow A(^{163}Ho)_{theo} \approx 70MBq (A(^{166m}Ho)_{meas} \approx 500kBq)$
- Ho chemical separation with ion-exchange resins in hot-cell
 - ► efficiency ≈79%
 - * from CENTRA, Lisbon

- Metallic holmium sputter target for implanter ion source
- 30% enriched $Er_2O_3 \rightarrow Ho_2O_3$
- thermoreduction/distillation in furnace (Genova) ► $Ho_2O_3+2Y(met) \rightarrow 2Ho(met)+Y_2O_3$ at 2000°C
- → V.Ceriale (poster)

HOLMES array read-out: rf-SQUID µwave mux

TES with rf-SQUID µwave read-out testing

27

HOLMES DAQ

Software Defined Radio + flux ramp modulation based on ROACH-2

pit met ROACH2 system

in Milano-Bicocca

• multiplexing factor N_{mux}

• **f**_{res} required bandwidth per channel

$$f_{TES} = 2n_{\Phi_0}f_{sampl}$$

$$f_{sampl} = 5/\tau_{rise} (f_{sampl} \text{ and } \tau_{rise} \text{ from pile-up simulations})$$

$$N_{mux} = \frac{f_{ADC}}{10f_{TES}} f_{sampl} = 0.5MHZ, n_{\Phi_0} = 2 \rightarrow N_{mux} \approx 28$$

HOLMES signal processing and in-line analysis

• normal data taking (permanent RAID storage)

* hypothetical configurations

- save only *n*-tuples (6 × 4 byte words) *
- ▶ high threshold ($E_{th} \approx 2.022 \text{ keV}$, $E_{M1} = 2.041 \text{ keV}$, $Q_{EC} = 2.8 \text{ keV}$, 21% of spectrum) *
- about 150TB in 3 years (un-compressed)
- periodic minimum bias samples (temporary storage)
 - tune parameters for real time pulse processing
 - full waveform (512 samples at 12 bit) for immediate off-line analysis *
 - ▶ full spectrum → 20TB/day
 - combined with high threshold data
- lower threshold is possible with compression

ROACH2 FW real-time
pulse processing:
• threshold cut
• ...
SERVER quasi real-time
pulse processing:
• OF analysis → n-tuples
• pile-up detection
• ...

HOLMES schedule and conclusions

Project Year	2015	2016		2017		2018	
Task	S2	S1	S2	S1	S2	S1	S2
Isotope production							
TES pixel design and optimization			1				
Ion implanter set-up and optimization							
Full implanted TES pixel fabrication							
ROACH2 DAQ (HW, FW, SW)							
32 pix array 6mo measurement							
Full TES array fabrication							
HOLMES measurement							

HOLMES project status

- many technical challenges are being addressed in parallel
- design phase is almost complete
- setting up is in progress
- □ spectrum measurements are coming in ≈1 year

Open post-doc position with HOLMES

The group at Università di Milano-Bicocca works on Low Temperature Detectors for Neutrino Physics and has one postdoctoral fellowship available in the framework of the HOLMES experiment.

http://artico.mib.infn.it/holmes

For more information contact Angelo Nucciotti at angelo.nucciotti@mib.infn.it

. . .

Low energy background sources / 2

