

HOIMES

∠ DEGLI STUDI /ERSI7 HOLMES MIL. BICOCCA

M. Faverzani on behalf of the HOLMES collaboration

GA n. 340321

HOLMES is an experiment to directly measure the neutrino mass with a sensitivity as low as $\sim 1 \text{ eV}$. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of ¹⁶³Ho (A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429). The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. HOLMES will deploy a large array of low temperature microcalorimeters with implanted ¹⁶³Ho nuclei. We outline here the project technical challenges and the present status of the development.

¹⁶³Ho + e \longrightarrow ¹⁶³Dy^{*} + v_e Electron capture from shell \ge M1 A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

• Calorimetric measurement of the (mostly non-radiative) de-

Statistical sensitivity $\Sigma(m_v)$ from MC simulations

• strong on statistics $N_{\rm ev} = A_{\rm EC} N_{\rm det} T_{\rm M}$: $\Sigma(m_{\rm v}) \propto N_{\rm ev}^{1/4}$

- excitation of Dy
- Rate at the end-point depends on Q • Measured with Penning trap: Q = 2.833 keV Phys.Rev.Lett., 115:062501 (2015) $\tau_{1/2} \approx 4570$ years —> few nuclei are needed
- $\frac{d\lambda}{dE_c} = \frac{G_\beta^2}{4\pi^2} \left(Q E_c\right) \sqrt{\left(Q E_c\right)^2 m_\nu^2} \times \Sigma_i n_i C_i \beta_i \frac{\Gamma_i}{2\pi} \frac{1}{\left(E_c E_i\right)^2 + \Gamma_i^2/4}\right)$ 10¹² N1 $Q_{EC} = 2.80 \text{ keV}$ = () $--- m_v = 0 \text{ ev}$ M1 >9 4 10^{11} $---m_v = 5 \text{ ev}$ $--- m_v = 10 \text{ ev}$ M2 $10^4/0.12$ Counts/0.2 10¹⁰ 10⁸ 10^{10} 3 Counts $N_{ev} = 10^{14}$ $f_{pp} = 10^{-6}$ 10^{7} $\Delta E_{FWHM} = 2 \text{ eV}$ 10^{6} 2.83 2.5 3.0 2.81 2.82 0.5 1.5 Energy [keV] Energy [keV]

- strong on rise time pile-up (probability $f_{pp} \approx A_{EC} \tau_R$)
- weak on energy resolution ΔE

A. Nucciotti, Eur. Phys. J. C (2014) 74:3161

• $N_{\text{mux}} \le f_{\text{ADC}} / 10 f_{\text{TES}}$; $f_{\text{sampl}} = 0.5 \text{ MHz}, n_{\Phi_0} = 2$

MC simulations for effective time resolution

• generate realistic TES signals from differential equations

$$f_{\rm pp} = A_{\rm EC} \Delta t_{\rm max} \left[1 - \int_0^{\Delta t_{\rm max}} \frac{\eta(x)}{\Delta t_{\rm max}} dx \right] = A_{\rm EC} \tau_{\rm eff}$$

• $E_1 + E_2 \in Q \pm 0.1 \text{ keV}$ • sampled records with realistic noise (ΔE) • signal $S(\omega)$, noise $N(\omega)$

Single value decomposition also under study B.Alpert et al. J.Low Temp. Phys 184:263 (2016) chamber XY scanning ** * delivered July 2017 ** delivery planned end 2017

90° magnet sputter ion source

Evaporation of gold simultaneous to the implantation to reduce sputtering effects of the ions on gold and to prevent excess of heat capacities •Enriched Er₂O₃ samples^{*} pre/post processed at PSI

25mg irradiatied for 55 days $\rightarrow A(^{163}Ho) \approx 5 \text{ MBq}, A(^{166m}Ho)_{meas} \approx 10 \text{ kBq}$ 150mg irradiated for 50 days $\rightarrow A(^{163}Ho) \approx 38 \text{ MBq}, A(^{166m}Ho)_{meas} \approx 37 \text{ kBq}$ Holmium chemical separation

efficiency $\approx 79\%$ •Metallic holmium sputter target

thermoreduction/distillation in furnace @ INFN Genoa

 $Ho_2O_3 + 2Y(met) = 2Ho(met) + Y_2O_3$ at 2000° from CENTRA, Lisbon

