Status of the HOLMES experiment

Marco Faverzani

Università & INFN Milano-Bicocca

on behalf of the **HQLMES** collaboration

Absolute neutrino mass

¹⁶³Ho electron capture

 163 Ho + e⁻ \longrightarrow 163 Dy^{*}+v_e

¹⁶³Ho decay via EC from shell \geq M1, with Q_{FC} \sim 2.8keV

Proposed by A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

•calorimetric measurement of the Dy atomic de-excitation (mostly non-radiative)

•rate at the end point depends on $(Q - E_{M_1})$: the proximity to M1 resonance peak enhances the statistics at the end point (i.e. sensitivity on m_v)

• $\tau_{1/2} \sim$ 4570 years: few nuclei are needed (2x10^{11 163}Ho nuclei = 1 Bq)

HOLMES (ERC Grant 340321):

- Transition Edge Sensors
 - $\Delta E \sim 1 \text{ eV}, \Delta t \sim 1 \mu s$
- 300 Hz/det of ¹⁶³Ho
- 6.5x10¹⁶ nuclei of ¹⁶³Ho
- $f_{pp} \approx A \cdot \Delta t$
- 3x10¹³ in 3 years

[•] sensitivity on $m_v \sim eV$

Detectors testing

tested several geometries

test @Milano with μ -wave

multiplexing

- Not implanted with Holmium!
- ⁵⁵Fe (5.9 keV) + fluorescence source (Ca 3.7 keV; Cl 2.6 keV; Al 1.5 keV)
- selected stray inductance to obtain $\tau_{\textrm{R}}$ \approx 10 μs

See A. Puiu's talk (#393)

Eur. Phys. J. C, 79:304 (2019)

Detectors fabrication

- TES originally fabricated at NIST, Boulder, CO, USA
- ¹⁶³Ho implantation at INFN, Genova, Italy
- 1 μm Au final layer deposited at INFN, Genova, Italy
- final fabrication process: release of the membrane with KOH in Milano or DRIE

КОН

INFN

Target chamber

ion implantation (SRIM2013) – energy beam 50 keV

- ¹⁶³Ho concentration in absorbers saturate because ¹⁶³Ho sputters off Au from absorber
- effect compensated by Au co-evaporation (also for heat capacity reasons)
- final 1 μ m Au layer deposited in situ to avoid oxidation

deposition rate (with 4 sputter sources) \approx 50 nm/h \sim 20 hours to deposit 1 μ m

Detectors fabrication @ Milano-Bicocca

3) SiN membrane release

See E. Ferri's poster (Session A - ID 221-408)

<u>... vs DRIE</u>

HOLMES ion implanter

- extraction voltage 30-50 kV ٠
- ~10 nm implanting depth
- ¹⁶³Ho/^{166m}Ho separation better than 10⁵ ٠

-5

slit

0

163

5

4 mm FWHM

8

HOLMES Ion implanter: testing

See M. De Gerone's poster (session B - ID 192-389)

sputter target

- test in progress at INFN Genova
 - no focusing
 - sputter target made in Cu
- measured current of 100 μA (preliminary)

next steps:

- tests with natural holmium
- tests with ¹⁶³Ho

Background

- environmental γ radiation
- $\gamma,$ X and β from close surroundings
- cosmic rays
 - GEANT4 simulation for cosmic rays (muons) at sea level
 - > 200x200x2 μ m³ Au absorber produce **bkg ≈ 10⁻⁴ c/eV/day/det** (0 10 keV)

Measured: 200x200x2 μm³ Au absorber (HOLMES-like) → bkg (1 – 10 keV) ≈ 5x10⁻³ c/eV/day/det

- internal radionuclides (^{166m}Ho, byproduct of ¹⁶³Ho production)
 ➢ GEANT4 simulation for ^{166m}Ho (β⁻, Q = 1856 keV, τ_{1/2} = 1200 y)
 - \blacktriangleright 200x200x2 μ m³ Au absorber produce
 - $bkg \approx 10^{-11} c/eV/day/det/(^{166m}Ho nucleus)$

HOLMES baseline: ¹⁶³Ho pile-up rate $\langle r_{pp} \rangle = A \cdot f_{pp}/2Q = 300 \text{ Bq x } 3 \cdot 10^{-4}/2Q = 1.5 \text{ c/eV/day/det}$

Microwave multiplexing readout

TESs readout with microwave multiplexing (produced by NIST)

- each sensor inductively coupled to a RF-squid part of a $\lambda/4$ resonator
- a comb of signals probe the resonators at their characteristic resonant frequency

 $E \longrightarrow \delta T_{\text{TES}} \longrightarrow \delta I_{\text{TES}} \longrightarrow \delta \phi_{\text{squid}} \longrightarrow \delta f_{\text{resonator}}$

[dB]

S₂₁

DAQ with the ROACH2

- Software Defined Radio with the open system ROACH2 (Casper collaboration)
- ADC BW 550 MHz
- real time pulse reconstruction

Multiplexing factor proportional to the target rise time: $n_{\text{TES}} \approx 3.4 \cdot 10^{-6} \tau_{\text{R}}$

requiring τ_R = 10 µs

At the moment n_{TES} is limited by the readout power of the RF probe signals

DAQ with the ROACH2 (cont'd)

Polyphase

Microwave

New semi-commercial up/down conversion board

- Commercial design but customized to match the HOLMES requirements
- 16 channels measured at the same time (firmware limited)
- white noise level $\approx 2-3 \phi_0/Hz^{0.5} = 23-35 \text{ pA}/Hz^{0.5}$ (preliminary)
- total readout power -7 dBm, compatible for reading out 32 resonators
- two boards delivered and currently being characterized Conversion Loss

See A. Giachero's poster (session B - ID 150-397)

M. Faverzani, LTD18, Milano (Italy), July 23 2019

Detector time resolution (MC simulations)

Summary

- The detector design has been chosen
- HOLMES detector production procedure defined
 - Firsts detectors are being characterized
- Ion implanter
 - Observed a current of 100 μA with Cu target
- Readout for 16 channels, ready to be scaled up with the new firmware
- Pile-up simulations show time resolution of ~ 2.8 μs