Bandwidth requirements and

effective time resolution in HOLMES

Elena Ferri for the HOLMES collaboration. INFN Sez. Milano-Bicocca

Determination of the absolute electron (anti-)neutrino mass 4-7 April 2016, Trento, Italy

Outline

- ¹⁶³HO EC spectrum experiment
- ¹⁶³HO pile-up spectrum
- HOLMES
 - HOLMES sensitivity
 - RF-SQUID read out with multiplexing microwave
 - Bandwidth budget
- Time resolution
 - Simulation of TES respose
 - Pile-up simulations
 - Effective time resolution

HO Electron capture experiments

$$163Ho + e^{-} \rightarrow 163Dy^{*} + v_{e}$$

electron capture from shell \ge M1

A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- > calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- \succ rate at end-point and ${
 m v}$ mass sensitivity depend on Q
 - Past measurements: Q = 2.3-2.8 keV. Recently measured Q = 2.83±0.04 keV
- > $\tau_{_{1/2}} \approx 4570$ years \rightarrow few active nuclei are needed

Ho Pile-up spectrum

- Pile-up pulse occurs when multiple events arrive within the temporal resolving time of the detector;
- Unresolved pile-up produces background close to the end-point;
- The 163 Ho pile-up events spectrum is quite complex and presents a number of peaks right at the end-point of the decay spectrum;
- To resolve pile-up:
 - > Detector with fast signal rise-time τ_{rise} ;
 - Pulse pile-up recovery algorithm;

M. Galeazzi et al., arXiv:1202.4763v2 A. Nucciotti, Eur. Phys. J. C, (2014) 74:3161

Goal

- neutrino mass measurement: m_v statistical sensitivity as low as 0.4 eV
- prove technique potential and scalability:
 - ► assess EC *Q*-value
 - assess systematic errors

Baseline

- TES with implanted ¹⁶³Ho
 - ► 6.5x10¹³ nuclei per pixel
 → 300 dec/sec
 - ► $\Delta E \approx 1 \text{ eV}$ and $\tau_R \approx 1 \mu \text{ s}$
- 1000 channel array
 - ▶ 6.5x10^{16 163}Ho nuclei
 → ≈18µg
 - ► 3x10¹³ events in 3 years

→ Project Started on February 1st 2014

http://artico.mib.infn.it/holmes

HOLMES sensitivity: montecarlo simulation

- > strong on statistics $N_{ev} = A_{EC} N_{det} t_{M}$: $\Sigma(m_v) \propto N_{ev}^{1/4}$
- > strong on rise time pile-up (probability $f_{pp} \approx A_{EC} \tau_{R}$)
- > weak on energy resolution ∆E

L^S *t*_M measuring time *N*_{det} number of detectors *A*_{EC} EC activity per detector *τ*_R time resolution (≈rise time)

RF-Squid read out with multiplexing microwave

- FF- SQUID coupled with DC biased TES and a λ/4-wave resonant circuit
- RF-SQUID read out with flux ramp demodulation (common flux line inductively coupled to all SQUIDs)
- Signal reconstructed with homodyne detection and demodulation
- 1. An event in the absorber increases the temperature and therefore the resistance of the TES;
- 2. Change in TES current ⇒ change in the input flux to the SQUID;
- 3. The RF-SQUID transduces a change in input flux into a variation of resonant frequency and phase;
- 4. The ramp induces a controlled flux variation in the rf-SQUID, which is crucial for linearizing the response.

HOLMES

The signal is reconstructed by comparing the phase shift caused by the interaction of the radiation in the TES, with the free oscillation of the SQUID, when the TES is not biased.

TES microwave multiplexing with RF-SQUID ramp modulation + ROACH2-based Software Defined Radio (SDR)

Bandwidth budget

The detector design is mostly driven by the read-out bandwidth requirements.

- Effective sampling rate is set by the ramp: $f_{ramp} = f_{samp}$
- Necessary resonator bandwidth per flux ramp (resonator bandwidth): $f_{res} \ge 2 n_{\Phi_0} f_{samp}$
- To avoid cross talk spacing between resonances: $f_n \ge g_f f_{res}$ [$g_f = 10$]
- To avoid distortions (signal BW): $f_{samp} \ge \frac{R_d}{\tau_{rise}} \approx \frac{5}{\tau_{rise}}$ [τ_{rise} exponential]
- Available ADC bandwidth $\rm f_{_{ADC}}$ with ROACH2 system 550 MHz
- Multiplexing factor:

$$n_{TES} = \frac{f_{ADC}}{f_n} \le \frac{f_{ADC} \tau_{rise}}{2 R_d g_f n_{\Phi_0}} \approx \frac{f_{ADC} \tau_{rise}}{200}$$

for fixed f_{ADC} =550MHz and $n_{TES} \approx 30 \leftrightarrow \tau_{rise} \approx 10 \mu s$ with f_{samp} =0.5MHz

 \rightarrow check for $\tau_{_{eff}}$ and $\Delta E...$

Simulation of TES response 1

Pulse profile:

obtained by solving the two coupled differential equations (Irwin-Hilton model).

- \rightarrow fourth order Runge-Kutta method (RK4)
- → the non-linearity behaviour is automatically taken into account

Simulation of TES response 1

Noise profile:

thermodynamic fluctuations of its state variables (I,T) + Johnson noise of shunt resistance R, and SQUID amplifier noise (Irwin-Hilton model).

 \rightarrow double roll off from the separate roll-off of the Johnson and thermal fluctuation noise

Simulation of sets of pile-up events with random time distances and with known time distances. In first approximation \rightarrow pile up of two events (i.e. two decays in one detector too close in time so that they are mistaken as a single one with an apparent energy equal to the sum of the two decays)

Events:

- ¹⁶³Ho spectrum (Q=2.5 keV,m,=0 eV) energy distribution (only considered the one-hole electron excitation spectrum)
- event pairs with $E_1 + E_2 \in [2.4 \text{ keV}, 2.6 \text{ keV}]$
- delay of the pile up events from 0 to $16\mu s$
- the arrival time does not match with the sampling (i.e. the simulated signals are originally oversampled and the arrival time is generated randomly)

ADC:

- 12 bit in a dynamic range 0-40 µA
- sample frequency of 0.5 and 1 MHz
- record length 2048 or 4096 points (1/8 for pretrigger)

Effective time resolution

For subsequent (Δt) events with energy E_1 and E_2 : time resolution $\tau_R = \tau_R(E_1, E_2)$

$$N_{pp}(E) = A_{EC} \int_{0}^{\infty} \tau_{R}(E, \epsilon) N_{EC}(\epsilon) N_{EC}(E-\epsilon) d\epsilon$$

We evaluate the effective time resolution τ_{eff} from pile-up detection efficiency $\eta(\Delta t)$

$$f_{pp} = A_{EC} \Delta t_{max} \left[1 - \int_{0}^{\Delta t_{max}} \frac{\eta(x)}{\Delta t_{max}} dx \right] = A_{EC} \tau_{eff}$$

where

 $\eta(x)$ rejection efficiency (0 - 1)

 ΔT_{max} is the time interval used $[0 - 18 \mu s]$

 $\tau_{_{eff}}$ is an effective time resolution

Pile-up detection algorithms:

• Wiener Filter WF or Single Value Decomposition SVD (→ **B. Alpert's talk this afternoon**)

Discrimination with Wiener Filter

HOLMES

In our analysis the pile-up discrimination algorithms are based on the Optimum Filter and on the Wiener Filter. The OF provides the best estimate for the signal amplitude while the WF is a digital filter to gain time resolution.

Pile-up rejection efficiency

For lower sampling frequencies a more efficient trigger on the Wiener filter is required

F sam	reclen	L	τ _{rise} (10-90)	$ au_{decay}$	false +	$ au_{_{eff}}$	ΔE
[MHz]	[sample]	[nH]	[us]	[us]	%	[us]	[eV]
1	1024	45	18	262	3	3.4	2.4
1	1024	84	31	225	4.5	3.7	2.4

Random events

Random pile-up events with time distance between 0 and 16 μs

- Detector design driven by readout bandwidth
- Pile-up is a strong source of background at the end-point
- Wiener filtering has proven to be a viable solution for pile-up identification
- We are running new simulations considering the two-hole deexcitation spectrum with Q=2833 eV
- We are working on a new trigger for the Wiener Filter