Status of the HOLMES experiment

Marco Faverzani

Università & INFN Milano-Bicocca on behalf of the **HOLMES** collaboration

¹⁶³Ho electron capture

 163 Ho + e⁻ \longrightarrow 163 Dy^{*}+v_e

¹⁶³Ho decay via EC from shell \geq M1, with Q_{FC} \sim 2.8keV

Proposed by A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

•calorimetric measurement of the Dy atomic de-excitation (mostly non-radiative)

•rate at the end point depends on $(Q - E_{M_1})$: the proximity to M1 resonance peak enhances the statistics at the end point (i.e. sensitivity on m_v)

• $\tau_{1/2} \sim 4570$ years: few nuclei are needed (2x10^{11 163}Ho nuclei = 1 Bq)

HOLMES (ERC Grant 340321):

- Transition Edge Sensors
 - $\Delta E \sim 1 \text{ eV}$, $\tau_R \sim 1 \mu s$
- 300 Hz/det of ¹⁶³Ho
- 6.5x10¹⁶ nuclei of ¹⁶³Ho
- $f_{\rm pp} \approx A_{\rm EC} \cdot \tau_{\rm R}$
- 3x10¹³ in 3 years

[•] sensitivity on $m_v \sim eV$

Pile-up

• pile-up is a major systematics of the calorimetric approach

 $\succ N_{pp}(E) = f_{pp}N_{EC}(E) \otimes N_{EC}(E)$, with $f_{pp} \approx A_{EC}\tau_{R}$

A_{EC} activity/detector

M. Faverzani, CNNP2020, Cape Town (South Africa), Feb 2020

HOLMES (ERC-Adv. Grant 340321) PI:S.Ragazzi

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112 http://artico.mib.infn.it/holmes

Goals:

- Neutrino mass determination with a sensitivity as low as ~ 1 eV
- proof potential and scalability of the approach
- precise calorimetric determination of Q
- systematic errors assessment

Two steps approach:

- 64 channels mid-term prototype, $t_M = 1$ month ($m_v < 10 \text{ eV}$)
- full scale: 1000 channels (Transition Edge Sensors)
- 300 Hz/detector → 3x10¹³ events collected in 3 years
- 6.5x10^{16 163}Ho nuclei (≈18 μg)

¹⁶³Ho production & purification

$$\begin{array}{ll} {}^{162}\text{Er}(n,\gamma){}^{163}\text{Er} & \sigma_{\text{thermal}} \approx 20b \\ {}^{163}\text{Er} \longrightarrow {}^{163}\text{Ho} + \nu_{\text{e}} & \tau_{\gamma_{2}}{}^{\text{EC}} \approx 75 \text{min} \end{array}$$

- ILL nuclear reactor @ Grenoble: high thermal n flux 1.3x10¹⁵ n/cm²/s
- > cross section burn up ¹⁶³Ho(n, γ)¹⁶⁴Ho not negligible (~ 200 b)
- ▶ ¹⁶⁵Ho(n,γ) (mostly from ¹⁶⁴Er(n,γ)) → ^{166m}Ho, β⁻, $\tau_{\gamma_{\beta}}$ = 1200 y, Q = 1856 keV
 - > $A(^{163}Ho)/A(^{166m}Ho) = 100 \sim 1000$
- chemical pre-purification and post-separation at PSI (Villigen, Switzerland)
 - S. Heiniz et al., PLoS ONE 13(8):e0200910
- > HOLMES needs ~ 300 MBq of 163 Ho^{*} for 1000 detectors

*depends on the actual global embedding process efficiency

HOLMES ¹⁶³Ho inventory:

- □ \approx 110 MBq of purified ¹⁶³Ho available at INFN in Genova
- $\square \approx 250 \text{ kBq of } ^{166m}\text{Ho}$
- more ¹⁶²Er available to produce 80 MBq of ¹⁶³Ho
 - ILL shutdown until 2022

HOLMES mass separation and ion implantation

- extraction voltage 30-50 kV
 - ~10 nm implanting depth
- ¹⁶³Ho/^{166m}Ho separation better than 10⁵

HOLMES Ion implanter: testing

sputter target

- test in progress at INFN Genova
 - no focusing
 - sputter target made in Cu
- Cu ion beam current > 30 μA (HOLMES requires 1-10 μA of ¹⁶³Ho)

next steps:

- tests with natural holmium
- tests with ¹⁶³Ho (sintered with other metals)

Transition Edge Sensors

Low temperature detectors

- (quasi-)equilibrium thermal detector
- complete energy thermalization \rightarrow calorimetry
- $\Delta T = E / C \rightarrow \text{low } C$
 - Iow T (T << 1K)</p>
 - preferable dielectrics or superconductors
- good energy resolution
- wide choice of materials
- slow time response

Transition Edge Sensors (TES)

- exploit the steepness of R(T) of a superconductor kept in its transition to measure ΔT
- state of the art energy resolution
- multiplexing scheme available
- ➢ limited dynamics → design optimized for a specific application

Detectors testing

- tested several geometries
- produced entirely at NIST
- Not implanted with Holmium!
- ⁵⁵Fe (5.9 keV) + fluorescence source (Ca 3.7 keV; Cl – 2.6 keV; Al – 1.5 keV)
- selected stray inductance to obtain $\tau_{\text{rise}} \approx$ 13 μs

test @Milano with µ-wave multiplexing

E [ko]/]	
E[Kev]	
1.49	4.3±0.3
2.62	4.5±0.3
3.69	4.6±0.3

 $f_{\rm samp}$ = 500 kHz

Microwave multiplexing readout

TESs readout with microwave multiplexing (produced by NIST)

- each sensor inductively coupled to a RF-squid part of a $\lambda/4$ resonator
- a comb of signals probe the resonators at their characteristic resonant frequency

 $E \longrightarrow \delta T_{\text{TES}} \longrightarrow \delta I_{\text{TES}} \longrightarrow \delta \phi_{\text{squid}} \longrightarrow \delta f_{\text{resonator}}$

[dB]

S₂₁

DAQ with the ROACH2

at the moment readout available for 64 channels

D.T. Becker at al., JINST 14 (2019) P10035

Multiplexing factor proportional to the target rise

Detectors fabrication

- TES originally fabricated at NIST, Boulder, CO, USA
- ¹⁶³Ho implantation at INFN, Genova, Italy
- 1 μm Au final layer deposited at INFN, Genova, Italy
- final fabrication process: release of the membrane with KOH in Milano or DRIE

Target chamber

ion implantation (SRIM2013) – energy beam 50 keV

- ¹⁶³Ho concentration in absorbers saturate because ¹⁶³Ho sputters off Au from absorber
- effect compensated by Au co-evaporation (also for heat capacity reasons)
- final 1 μm Au layer deposited in situ to avoid oxidation

deposition rate (with 4 sputter sources) > 100 nm/h \sim 10 hours to deposit 1 μm

beam (for sputtering) HOLMES detector array

Ar ion

Detectors fabrication @ Milano-Bicocca

SiN membrane release

<u>КОН...</u>

- ✓ gold thickness uniformity measured: $\sigma_t/_t \sim 4\%$
- \checkmark full fab tested on 2 arrays
- ✓ arrays characterized at low temp → $\Delta E_{\text{FWHM}} = (4.64 \pm 0.14) \text{ eV} @ 6 \text{ keV}$

3)

Background

- environmental γ radiation
- γ , X and β from close surroundings
- cosmic rays
 - GEANT4 simulation for cosmic rays (muons) at sea level
 - > 200x200x2 μ m³ Au absorber produce **bkg ≈ 10⁻⁴ c/eV/day/det** (0 10 keV)

- internal radionuclides (^{166m}Ho, byproduct of ¹⁶³Ho production) > GEANT4 simulation for ^{166m}Ho (β^- , Q = 1856 keV, $\tau_{1/2}$ = 1200 y)
 - > 200x200x2 μ m³ Au absorber produce
 - $bkg \approx 10^{-11} c/eV/day/det/(166mHo nucleus)$

if A (¹⁶³Ho) = 300 Bq and requiring bkg(^{166m}Ho) < 0.1 c/eV/day/det

N(¹⁶³Ho)/N(^{166m}Ho) > 6000 A(¹⁶³Ho)/A(^{166m}Ho) > 1500

 10^{-3} Cu K_{α}/K_{β} counts/eV/day/det 10^{-4} 2000 4000 6000 8000 10000 energy [eV] 15 M. Faverzani, CNNP2020, Cape Town (South Africa), Feb 2020

HOLMES baseline: ¹⁶³Ho pile-up rate $\langle r_{pp} \rangle = A \cdot f_{pp}/2Q = 300 \text{ Bq x } 3 \cdot 10^{-4}/2Q = 1.5 \text{ c/eV/day/det}$

Detector time resolution (MC simulations)

energy [eV]

HOLMES short/long term program

2020/2021

- optimize ion beam with ^{nat}Ho and ¹⁶³Ho
- implant of first TES array with low dose (≈ 1 Bq) without focusing
 - ➤ statistical sensitivity on $m_v \approx 10 \text{ eV}$ in one month of data taking
- focusing stage and target chamber integration
- optimize high dose (up to 300 Bq) ¹⁶³Ho implantation by the end of 2020
 - 64 high-activity channels will start data taking by beginning of 2021

long term

- ✓ large scale ¹⁶³Ho production
- TES performance
- large bandwidth µwave multiplexing
- embedding efficiency
- high dose implantation
- running of 1000 detectors and data analysis
- pile-up rejection algorithm

Summary

- available ¹⁶³Ho to implant 300 Bq in \approx 300 detectors
- ion implanting system is being setup
- single detector performance demonstrated
- array fabrication ready with KOH (R&D on DRIE in progress)
- readout ready and available for 64 channels

the first ¹⁶³Ho measurement is scheduled to begin at the beginning of 2021