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163Ho electron capture
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163Ho decay via EC from shell ≥ M1, with QEC ~ 2.8keV

Proposed by A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

•calorimetric measurement of the Dy atomic de-excitation (mostly non-radiative)

•rate at the end point depends on (Q – EM1
): the proximity to M1 resonance peak enhances the statistics at the end point 

(i.e. sensitivity on mn)

•t1/2 ~ 4570 years: few nuclei are needed (2x1011 163Ho nuclei = 1 Bq)

163Ho + e- 163Dy*+ne

Simulation 
single hole 
excitations

HOLMES (ERC Grant 340321):

• Transition Edge Sensors
• DE ~ 1 eV, tR~ 1 ms

• 300 Hz/det of 163Ho
• 6.5x1016 nuclei of 163Ho
• fpp ≈ AEC· tR

• 3x1013 in 3 years

• sensitivity on mn ~ eV



Pile-up
• pile-up is a major systematics of the calorimetric approach

➢ Npp(E)=fppNEC(E)   NEC(E), with fpp≈AECtR

Single hole excitations
Q = 2800 eV
fpp = 10-4

AEC activity/detector
tR time resolution

Impairing effect on the end-
point measurement

• fast detectors
• limited activity/det

parallelization over 
large number of 
detectors
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HOLMES (ERC-Adv. Grant 340321) PI:S.Ragazzi
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Goals:
➢ Neutrino mass determination with a sensitivity as 

low as ~ 1 eV
➢ proof potential and scalability of the approach
➢ precise calorimetric determination of Q
➢ systematic errors assessment

Two steps approach:
• 64 channels mid-term prototype, tM = 1 month 

(mn < 10 eV)
• full scale: 1000 channels (Transition Edge 

Sensors)
• 300 Hz/detector → 3x1013 events collected in 3 

years
• 6.5x1016 163Ho nuclei (≈18 mg)

B. Alpert et al., Eur. Phys. J. C,  (2015) 75:112
http://artico.mib.infn.it/holmes

MonteCarlo with 1000 detectors x 3 years
AEC =  10 c/s/det 30 c/s/det 100 /s/det 300 c/s/det

HOLMES

tR≈10ms

tR≈5ms

tR≈3ms

tR≈1ms



163Ho production & purification
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162Er(n,g)163Er                        sthermal ≈ 20b
163Er         163Ho + ne t½

EC ≈ 75min

➢ ILL nuclear reactor @ Grenoble: high thermal n flux 1.3x1015 n/cm2/s

➢ cross section burn up 163Ho(n,g)164Ho not negligible (~ 200 b)

➢
165Ho(n,g) (mostly from 164Er(n,g)) → 166mHo, b-, t½ = 1200 y, Q = 1856 keV

➢ A(163Ho)/A(166mHo) = 100 ~ 1000

➢ chemical pre-purification and post-separation at PSI (Villigen, Switzerland)

➢ S. Heiniz et al., PLoS ONE 13(8):e0200910

➢ HOLMES needs ~ 300 MBq of 163Ho* for 1000 detectors

*depends on the actual global embedding process efficiency

HOLMES 163Ho inventory:

❑ ≈ 110 MBq of purified 163Ho available at 
INFN in Genova

❑ ≈ 250 kBq of 166mHo
❑ more 162Er available to produce 80 MBq

of 163Ho
▪ ILL shutdown until 2022



HOLMES mass separation and ion implantation
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4 mm FWHM

163

162

target
chamber

magnetic
XY scanning

electrostatic triplet

Faraday cup

steering magnet

sputter ion source
slit

• extraction voltage 30-50 kV
• ~10 nm implanting depth
• 163Ho/166mHo separation better than 105

4 mm 
FWHM

calculated beam size



HOLMES Ion implanter: testing

• test in progress at INFN Genova
• no focusing
• sputter target made in Cu

• Cu ion beam current > 30 mA (HOLMES 
requires 1-10 mA of 163Ho)

next steps:
• tests with natural holmium
• tests with 163Ho (sintered with other metals)

sputter target



Transition Edge Sensors
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Electro-thermal 
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sensor 
(thermometer)

E

DT=E/C

Low temperature detectors
▪ (quasi-)equilibrium thermal detector
▪ complete energy thermalization → calorimetry
▪ DT = E / C→ low C

▪ low T (T << 1K)
▪ preferable dielectrics or superconductors

➢ good energy resolution
➢ wide choice of materials
➢ slow time response

Transition Edge Sensors (TES)

▪ exploit the steepness of R(T) of a superconductor 
kept in its transition to measure DT

➢ state of the art energy resolution
➢ multiplexing scheme available
➢ limited dynamics → design optimized for a 

specific application



Detectors testing

9

• tested several geometries

• produced entirely at NIST

• Not implanted with Holmium!

• 55Fe (5.9 keV) + fluorescence source (Ca – 3.7 keV; 
Cl – 2.6 keV; Al – 1.5 keV)

• selected stray inductance to obtain trise ≈ 13 ms DE = 4.5 ± 0.1 eV

E [keV] DE [eV]

1.49 4.3±0.3

2.62 4.5±0.3

3.69 4.6±0.3

test @Milano with m-wave 
multiplexing

fsamp = 500 kHz

Eur. Phys. J. C, 79:304 (2019)



Microwave multiplexing readout
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TESs readout with microwave multiplexing (produced by NIST)

• each sensor inductively coupled to a RF-squid part of a l/4 resonator
• a comb of signals probe the resonators at their characteristic resonant frequency

E dTTES dITES dfsquid dfresonator

• a ramp signal added to the squids in order to linearize the response

K. D. Irwin and K. W. 
Lehnert, Appl.Phys.Lett.,
85:2107, 2004

dj



DAQ with the ROACH2
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• Software Defined Radio with the open system 
ROACH2 (Casper collaboration)

• ADC BW 550 MHz
• real time pulse reconstruction
➢ at the moment readout available for 64 channels

Multiplexing factor proportional to the target rise 
time: nTES ≈ 3.4·10-6trise

requiring trise = 10 ms

nTES ≈ 34

33 resonances on 1 mux chip

D.T. Becker at al., JINST 14 (2019) P10035
M. Faverzani, CNNP2020, Cape Town (South Africa), Feb 2020



Detectors fabrication
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• TES originally fabricated at NIST, Boulder, CO, USA
• 163Ho implantation at INFN, Genova, Italy
• 1 mm Au final layer deposited at INFN, Genova, Italy
• final fabrication process: release of the membrane with KOH in Milano or DRIE

DRIE
KOH

             

       



Target chamber TES detectors

163Ho beam

• 163Ho concentration in absorbers saturate because 163Ho 
sputters off Au from absorber

• effect compensated by Au co-evaporation (also for heat 
capacity reasons)

• final 1 mm Au layer deposited in situ to avoid oxidation

ion implantation (SRIM2013) – energy beam 50 keV

fluence    (implanted)
~3 Bq

Ho

Ar ion 
beam (for 

sputtering)

deposition rate (with 4 sputter sources) > 100 nm/h
~ 10 hours to deposit 1 mm

HOLMES 
detector 

array



Detectors fabrication @ Milano-Bicocca
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KOH…

… vs DRIE

1) 2)

3)

✓ gold thickness uniformity measured: 
Τ𝜎𝑡 𝑡~ 4 %

✓ full fab tested on 2 arrays
✓ arrays characterized at low temp →

DEFWHM = (4.64±0.14) eV @ 6 keV



Background
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HOLMES baseline: 163Ho pile-up rate 
<rpp> = A·fpp/2Q = 300 Bq x 3·10-4/2Q = 

1.5 c/eV/day/det

Cu 
Ka/Kb

• environmental g radiation

• g, X and b from close surroundings

• cosmic rays

➢ GEANT4 simulation for cosmic rays (muons) at sea level

➢ 200x200x2 mm3 Au absorber produce bkg ≈ 10-4 c/eV/day/det (0 – 10 keV)

Measured: 200x200x2 mm3 Au absorber (HOLMES-like) bkg (1 – 10 keV) ≈ 5x10-3 c/eV/day/det

• internal radionuclides (166mHo, byproduct of 163Ho production)

➢ GEANT4 simulation for 166mHo (b-, Q = 1856 keV, t1/2 = 1200 y)

➢ 200x200x2 mm3 Au absorber produce

bkg ≈ 10-11 c/eV/day/det/(166mHo nucleus)

if A (163Ho) = 300 Bq and requiring bkg(166mHo) < 0.1 c/eV/day/det

N(163Ho)/N(166mHo) > 6000

A(163Ho)/A(166mHo) > 1500



Detector time resolution (MC simulations)
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pile-up spectrum with a time resolution tR: 

𝑁𝑝𝑝 𝐸 = 𝐴𝐸𝐶 0
∞
𝜏𝑅 𝐸, 𝜖 𝑁𝐸𝐶 𝜖 𝑁𝐸𝐶 𝐸 − 𝜖 𝑑𝜖

E1 + E2 ∈ 2.7 ÷ 2.9 keV (from 163Ho 
spectrum), ∆𝑡 ∈ 0 ÷ 10 ms

pile-up detection algorithms for fsamp = 0.5 MHz, trise ≈ 20 ms:

• Wiener Filter        tR ≈ 3 ms
• Singular Value Decomposition        tR ≈ 2.8 ms (preliminary)

                   D         
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64 ch
256 ch

1024 ch

HOLMES short/long term program
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▪ optimize ion beam with natHo and 163Ho
▪ implant of first TES array with low dose (≈ 1 Bq) without 

focusing
➢ statistical sensitivity on mn ≈ 10 eV in one month of 

data taking

▪ focusing stage and target chamber integration
▪ optimize high dose (up to 300 Bq) 163Ho implantation by 

the end of 2020
➢ 64 high-activity channels will start data taking by 

beginning of 2021

2020/2021

✓ large scale 163Ho production
✓ TES performance
✓ large bandwidth mwave multiplexing

✓ embedding efficiency
✓ high dose implantation
✓ running of 1000 detectors and data analysis
✓ pile-up rejection algorithm

long term



Summary
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• available 163Ho to implant 300 Bq in ≈ 300 detectors

• ion implanting system is being setup

• single detector performance demonstrated

• array fabrication ready with KOH (R&D on DRIE in progress)

• readout ready and available for 64 channels

the first 163Ho measurement is scheduled to begin at the beginning of 2021


