Data analysis tools for the HOLMES experiment

NuMass - Milano 2022 Luca Origo on the behalf of the HOLMES collaboration

Luca Origo

Slides outline

- The HOLMES experiment
 - measurement, sensitivity
- Data handling
- Pulse analysis
- Parameter estimation
- Background rejection

The HOLMES experiment

- $\underline{\text{direct}}$ and calorimetric \mathbf{m}_{v} measurement
- ¹⁶³Ho electron capture
- sensitivity extrapolated from spectral fit

source ⊂ detector

The decay energy is entirely absorbed except for the neutrino contribution.

no model-dependence

Assessing a measurement only relying on the energy-momentum conservation principle.

Luca Origo 1/18

The HOLMES experiment

- direct and <u>calorimetric</u> \mathbf{m}_{v} measurement
- ¹⁶³Ho electron capture
- sensitivity extrapolated from spectral fit

source ⊂ detector

The decay energy is entirely absorbed except for the neutrino contribution.

no model-dependence

Assessing a measurement only relying on the energy-momentum conservation principle.

Luca Origo 1/18

The HOLMES experiment

- direct and calorimetric $\mathbf{m}_{\mathbf{v}}$ measurement
- ¹⁶³Ho electron capture
- **sensitivity** extrapolated from spectral fit

ROI lineshape(
$$E_c$$
) $\propto \sqrt{(Q-E_c)^2 - m_v^2}$

The HOLMES experiment

...

...

Luca Origo

Slides outline

- The HOLMES experiment
- Data handling
 - data taking, compression and tagging
- Pulse analysis
- Parameter estimation
- Background rejection

Luca Origo 3/18

Data handling

- Signals collected in arrays
- $t_{samp} = 2\mu s, n_{pts} = 1024, \tau_{R} \sim 15\mu s, \tau_{D} \sim 350\mu s$

- Python matricial operations with HDF5 file
- Data compression through parametrization

Luca Origo 4/18

Data handling

- Signals collected in arrays
- $t_{samp} = 2\mu s, n_{pts} = 1024, \tau_{R} \sim 15\mu s, \tau_{D} \sim 350\mu s$

- Python matricial operations with HDF5 file
- Data compression through parametrization

Luca Origo 5/18

Data handling

- Parametrization → offline events tagging (clustering algorithms under development to automate the operation)
 - 5 parameters <u>thresholds</u>:
 - empty (useful
 → noise spectrum analysis)
 - strange

NuMass 2022

- multiple (descent pile-up)
- bad-baseline
- coincidence (cosmic muons)
- Untagged events are labeled as 'good'

Luca Origo 5/18

Data handling

- Parametrization → offline events tagging (clustering algorithms under development to automate the operation)
 - 5 parameters <u>thresholds</u>:
 - empty (2) (useful
 → noise spectrum analysis)
 - strange (3)
 - multiple (1) (descent pile-up)
 - bad-baseline (4)
 - coincidence (cosmic muons)
 - Untagged events are labeled as 'good'

Luca Origo

Slides outline

- The HOLMES experiment
- Data handling
- Pulse analysis
 - optimum filter
 - correction algorithms
- Parameter estimation
- Background rejection

Pulse analysis

- Amplitude estimation by means of optimum filter application
 - Signal-to-Noise ratio is maximized
 - An average signal is required
- <u>Assumptions:</u>
 - \circ noise is ergodic
 - signal is well-sampled
 - signal modeled as:

Luca Origo 7/18

Pulse analysis

• What's the real arrival time of each signal?

 $\Delta \mathbf{t} = |\mathbf{t}_{\text{true}} - \mathbf{t}_{\text{o}}|$

- Discrete sampling produces an amplitude smearing
 - \circ 1 sampling frequency \Leftrightarrow effect \downarrow
 - \circ ↓ points on the pulse's rise \Leftrightarrow effect 1
- Solution: moving average to smooth the signal's rise
 - finding the best one that optimizes our spectral resolution
- The arrival time correction avoids a distortion of the energy spectrum

Rising edge samples of two simulated pulses

Luca Origo 8/18

Pulse analysis

Pulse analysis

 Correction parameters depend on the mean amplitude (⇔ energy) of the considered dataset

Pulse analysis

- **Energy calibration** delivered by ¹⁶³Ho EC characteristic peaks
 - extra-sources near/inside the ROI (Ca, Cl)
- Each TES have its own $E = f(A_{OF})$
 - aiming at a parallel spectrum analysis
- During test measurements 4 calibration sources in (1,6) keV region

The only calibration-dependent quantity is the Q-value which will be a free-parameter in the spectral fit.

An extremely precise calibration is not required

Luca Origo

Slides outline

- The HOLMES experiment
- Data handling
- Pulse analysis
- Parameter estimation
 - Bayesian approach
- Background rejection

Luca Origo 11/18

Parameter estimation

- Very useful application
 - extracting quantities from a fit
- Frequentist vs Bayesian
 - same performances in simple problems
 - the latter provides a more natural involvement of systematic errors
 - priors have an ambiguous role
 - **X** fixed parameter's value
 - updating parameter's distribution (to sample from)

posterior

marginalized Likelihood (normaliz. factor difficult to compute)

fitting the data

to the model

precedent

informations

Luca Origo 12/18

Parameter estimation

- Markov Chain generation
 - Sequence of states (=parameter's values) tending to a stationary distribution

- <u>Stan</u> is a software for bayesian inference that exploits MCMC
- It probes the parameters space looking for high-probability density regions

Markov Chain Monte Carlo

 Computing posterior starting from a data-set, its likelihood model and all the parameters priors

Luca Origo 13/18

Parameter estimation

Luca Origo

Slides outline

- The HOLMES experiment
- Data handling
- Pulse analysis
- Parameter estimation
- Background rejection
 - pile-up discrimination algorithms

Background rejection

HOLMES background sources		
unresolved pile-up (typically on the rise)	main contribution considering ~100 Bq/detector	
^{166m} Hoβ-decay	inside the detectors, low Q-value	
natural radioactivity	Monte Carlo studies	
<u>cosmic rays</u>	studied with plastic scintillators	

Methods for the undesired events discrimination:

- <u>Wiener filter</u>
- DSVP algorithm

A reduction of the pile-up contribution implies an improvement of our time resolution and, in particular, of our \mathbf{m}_{v} sensitivity.

Background rejection

Wiener filter

• Each event is filtered in order to <u>recover the time</u> profile of the energy deposition

 $\rightarrow\,$ the detector response is deconvolved

Single event \rightarrow single delta pulse Pile-up event \rightarrow multi-delta/broadened delta pulse

discrimination through <u>Wiener shape</u>
 <u>parameters</u>: delta width at a given height, delta
 points above the latter and delta maximum

Luca Origo 16/18

Background rejection

DSVP (Discrimination through Singular Vectors Projections)

- Unsupervised learning technique that discriminate pulses **looking at the average data 'morphology'**
 - a data-set with N_{good} >> N_{bad} is required to create a reduced parameter space
- Iterative procedure that
 - finds discrimination (hyper-surfaces) thresholds
 - removes events different from the average
- More on this technique is presented [Here].

Background rejection

A promising strategy:

- Using the Wiener transfer function (computed @ M1 EC-peak) for an initial cleaning
 - to reach the $N_{good} > N_{bad}$ condition @ ROI
 - \circ cuts on Wiener width shape parameter (WF_w)

$$\mathbf{WF}_{\mathbf{W}}^{\max,\min}(\mathrm{ROI}) = \mathbf{WF}_{\mathbf{W}}^{\max,\min}(\mathrm{M1}) + \Delta \mathbf{X}$$

• Applying DSVP on the filtered ROI data-set

Simulating datasets...

Luca Origo 18/18

Background rejection

To evaluate the behavior of our algorithms, we define an effective time resolution τ_{eff} :

 $\boldsymbol{\tau_{eff}} = \left(f_{pp} \big|_{after} / \left. f_{pp} \right|_{before} \right) \cdot \left. \delta \tau \right.$

Simulations assume the first level data reduction reach a time resolution ($\delta\tau$) of 10µs, corresponding to f_{pp} ~2 (@ **300Hz/TES**)

- Inside the ROI:
 - τ_{eff} after Wiener ~ 3µs (f_{pp} ~0.6)
 - \circ τ_{eff} after Wiener + DSVP ~ 1.5µs (f_{pp} ~0.3)

• The pile-up fraction over the entire EC spectrum decreases from 10⁻³ to 10⁻⁴

HOLMES analysis focuses on the 163 Ho EC spectrum reconstruction that can lead to a m_v upper boundary assessment.

Conclusions

HOLMES analysis focuses on the 163 Ho EC spectrum reconstruction that can lead to a m_v upper boundary assessment.

Conclusions

HOLMES analysis focuses on the 163 Ho EC spectrum reconstruction that can lead to a m_v upper boundary assessment.

Conclusions

The energy is well-estimated, <u>the</u> <u>intrinsic resolution of</u> <u>our TESs is recovered</u>.

HOLMES analysis focuses on the 163 Ho EC spectrum reconstruction that can lead to a m_v upper boundary assessment.

Conclusions

The energy is well-estimated, <u>the</u> <u>intrinsic resolution of</u> <u>our TESs is recovered</u>.

A bayesian tool for the parameter estimation is under testing.

HOLMES analysis focuses on the 163 Ho EC spectrum reconstruction that can lead to a m_v upper boundary assessment.

Conclusions

The energy is well-estimated, <u>the</u> <u>intrinsic resolution of</u> <u>our TESs is recovered</u>.

> Applying an iterative DSVP routine on a Wiener filtered dataset can be a good strategy to <u>reduce the pile-up</u> fraction.

A bayesian tool for the parameter estimation is under testing.

HOLMES analysis focuses on the 163 Ho EC spectrum reconstruction that can lead to a m_v upper boundary assessment.

The energy is well-estimated, <u>the</u> <u>intrinsic resolution of</u> <u>our TESs is recovered</u>.

A bayesian tool for the parameter estimation is under testing.

A novel technique for reducing the dead time of the experiment exploiting the <u>matrix optimum</u> <u>filter</u> is under study [<u>Here</u>].

Conclusions

Applying an iterative DSVP routine on a Wiener filtered dataset can be a good strategy to <u>reduce the pile-up</u> fraction.

Thanks for the attention!