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The HOLMES experiment

° and calorimetric m_measurement _

e '9Ho electron capture

e sensitivity extrapolated from spectral fit Assessing a measurement
only relying on the
energy-momentum

conservation principle.

source C detector

The decay energy is entirely

absorbed except for the
neutrino contribution.
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The HOLMES experiment
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energy-momentum
conservation principle.

The decay energy is entirely
absorbed except for the
neutrino contribution.
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The HOLMES experiment

e direct and calorimetric m_measurement [t lineshape(E ) ©€ /(Q-E )* - m ?

e '9Ho electron capture
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The HOLMES experiment

Energy resolution as Time resolution as
improved as possible improved as possible

Dead time as low
as possible
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e Data handling
o data taking, compression and tagging

e Pulse analysis
e Parameter estimation
e Background rejection
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Data handling

e Signals collected in arrays e Python matricial operations with HDF5 file

tsamp=2|‘|s' npts=1 024, T, ~15ps, T,~350ps e Data compression through parametrization
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Data handling

e Signals collected in arrays
t_=2ys, npts=1 024, T,~13ps, T,~330us

samp

e Python matricial operations with HDFS5 file
e Data compression through parametrization
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Data handling

input

e Parametrization — offline events tagging mm

(clustering algorithms under development
to automate the operation)

o 5 parameters thresholds:

m empty (useful
—s noise spectrum analysis)
strange
multiple (descent pile-up)
bad-baseline
coincidence (cosmic muons)

o Untagged events are labeled as
‘good’
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Data handling

e Parametrization — offline events tagging
(clustering algorithms under development | _,
to automate the operation) g
o 5 parameters thresholds: 2| |
m empty (2) (useful TrTEmwmmmmm Mg o, 7500 T T
—s noise spectrum analysis)
m strange
m multiple (1) (descent pile-up) ” y
m bad-baseline B 12
m coincidence (cosmic muons) Cos -
o Untagged events are labeled as "V = =

‘good’
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Pulse analysis

e Amplitude estimation by means of optimum filter application
o Signal-to-Noise ratio is maximized
o An average signal is required

— filtered pulse

04 —— pulse

e Assumptions:
o noise is ergodic 03

o signal is well-sampled
o signal modeled as:

0.2

®p

0.1 1

s[i] = K(E) - m]i] + nli]

\ [ ==

0 200 400 600 800 1000 1200 1400 1600
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Pulse analysis

Rising edge samples of two simulated pulses

e What's the real arrival time of each signal?
L .ooo.| = 2t=05 sampieum
At - |ttrue B l:Ol 10.00003
e Discrete sampling produces an amplitude smearing oo
o sampling frequency & effect Jo.00001
o points on the pulse’s rise & effect Jo 00000

90.0 925 950 975 100.0 102.5 105.0 107.5 110.0
# Sample [a.u.]

e Solution: moving average to smooth the signal'’s rise
o finding the best one that optimizes our spectral
resolution

—— At = 0 sample unit
—— At = 0.5 sample unit

10719

e The arrival time correction avoids a distortion of the

energy spectrum PSD of the
two pulses

10° 2x10°
Frequency [Hz]
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Pulse analysis
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Amplitude

Detector’s gain depends on the baseline B

o parameters (a,b) estimated from linear regression

Ap=Agp - [B)=Ay-a-B-D

Also the drift correction avoids a distortion of the energ

spectrum
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Pulse analysis

e Correction parameters depend on the mean amplitude
(¢ energy) of the considered dataset

f{(B) — {(B.E) = a(E) - B+ b(E)

<Aor(to)>
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Pulse analysis

e Energy calibration delivered by '®*Ho EC characteristic peaks
o extra-sources near/inside the ROI (Ca, Cl)

e EachTEShaveitsownE =f(A,,) J i
o aiming at a parallel spectrum analysis - o
| Mn
| o 6000 i TN . =%
e During test measurements 4 ﬁ s Y
calibration sources in (1,6) keV region 2 0%
> 3000+
8 2000
The only calibration-dependent quantity is the Q-value 10004 AJJL
which will be a free-parameter in the spectral fit.

> - . ; | — 1| -
0.00.5 1.0 1.5 2.0 2.5
Ao [Po]

An extremely precise calibration is not required
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o Bayesian approach

e Background rejection
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Parameter estimation

e Very useful application Bavesian approach:
o extracting quantities from a fit posterior = [prior| x MCMELELE

e Frequentist vs Bayesian model evidence

o same performances in simple problems

o the latter provides a more natural involvement of systematic errors
o priors have an ambiguous role
o [E¥ fixed parameter’s value
o updating parameter’s distribution
(to sample from) precedent
informations to the model

posterior marginalized Likelihood

(normaliz. factor difficult to compute)
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Parameter estimation

e Markov Chain generation e Markov Chain Monte Carlo
o Sequence of states o Computing posterior starting
(=parameter’s values) from a data-set, its likelihood

tending to a stationary model and all the parameters
distribution

priors
FWHM, no warmup 5.6 i
1209 [ chain:1
[ chain: 2
[ chain: 3 5.4
100 A [ chain: 4
o cha?n TD . . 5.2
o =1 choms o e Stan is a software for bayesian
inference that exploits MCMC 0
60 4.8 A
e [t probes the parameters space
401 . . ope 4.6 —— chain: 1
looking for high-probability — chain:2
o o —— chain: 3
29 density regions 441 - chaihs 4
—— chain: 5
0l = il i VY- 42+ warmup — chain: 6
20 2 22 3 0 1000 2000 3000 4000
Al # iterations
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Parameter estimation

Frequentist vs Bayesian application in a FWHM

estimation from a calibration peak (*°*Mn @ 5.895 keV)

Comparable outcomes:

Future application on "®*Ho more complex spectrum

5.15+0.05eV

E[u] = 5.11 eV
Elo] = 0.05 eV
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Background rejection
HOLMES background sources Methods for the undesired
events discrimination:

unresolved pile-up

e Wiener filter

(typically on the rise)

6610 Bdoc insi dlg Jvhg_ %Ztlﬁ(e:tors' e DSVP algorithm
A reduction of the pile-up
natural radioactivity | Monte Carlo studies contribution implies an
improvement of our time
. studied with plastic resolution and, in particular, of
e scintillators our m_ sensitivity.
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Background rejection

Wiener filter

e FEach eventis filtered in order to recover the time

profile of the energy deposition 12 Wikines Gt i
— the detector response is deconvolved 10 Original pulse
0.8 J
Single event — single delta pulse .
e 0.6 i o
Pile-up event — multi-delta/broadened 0.4 E, = Ey< 1500eV
delta pulse 0.2 ‘ At = 5us
0.0
e discrimination through Wiener shape 200 300 400 500 600|
Time [us]

parameters: delta width at a given height, delta
points above the latter and delta maximum
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Background rejection

Single pul

DSVP (Discrimination through Singular Vectors

Projections) it E
p3

e Unsupervised learning technique that discriminate . /’\
pulses looking at the average data ‘morphology’ AnnuanL )|
o adata-setwithN_ ,>>N,__, is required to create a |2\/(2
reduced parameter space b M s

e |[terative procedure that
o finds discrimination (hyper-surfaces) thresholds
o removes events different from the average

e More on this technique is presented [Here].

Single pulses
Pile-up pulses

3
0.6



https://arxiv.org/abs/2101.02705
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Background rejection

A promising strategy:

e Using the Wiener transfer function (computed @ M1
EC-peak) for an initial cleaning
o toreach the N ood™ Nbad condition @ ROI u
o cuts on Wiener width shape parameter (WF,,) e

Energy [keV]

WFWmaX.mln (ROI) — WFWmax.mln (Ml) + AX QZ N ——

4000

w
(=3
(=3
(=]

e Applying DSVP on the filtered ROI data-set

Counts/bin
[~
(=]
(=]
o

1000
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Background rejection

To evaluate the behavior of our algorithms, we define an 103
effective time resolution T -

Teff = 10 ps

_ . 2
Teﬁ' N (fpp|after / fpp|bef0re) ot =

Counts

Simulations assume the first level data reduction reach a time
resolution (6t) of 10us, corresponding to [,~2 (@ 300Hz/TES)

toi] TER= 1.7 pus

[ Total
[ Single
¢ Inside the ROI: 100{|{E3 Plle-up
: 2650 2700 2750 2800 2850 2900
o 1, after Wiener ~ 3ps (f ~0.6) Energy [eV]

o T, after Wiener + DSVP ~ 1.5us (fpp~0.3)

e The pile-up fraction over the entire EC spectrum decreases from 103 to 10*
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163Hg EC spectrum reconstruction
that can lead to a m_ upper
v

boundary assessment.



https://link.springer.com/article/10.1140/epjc/s10052-022-10379-w

HOLMES analysis focuses on the

163Ho EC spectrum reconstruction
Clustering algorithms that can lead to a m_upper

for the first level data boundary assessment.
reduction are under

development.
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for the first level data boundary assessment. intrinsic resolution of

reduction are under our TESs is recovered.
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for the first level data
reduction are under

development.

A bayesian tool for the

parameter estimation is
under testing.
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that can lead to a m_ upper
v

boundary assessment.

The energy is
well-estimated, the

intrinsic resolution of

our TESs is recovered.

Applying an iterative
DSVP routine on a
Wiener filtered dataset
can be a good strategy to

reduce the pile-up
fraction.
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Clustering algorithms
for the first level data
reduction are under

development.

A bayesian tool for the

parameter estimation is
under testing.

HOLMES analysis focuses on the

163Hg EC spectrum reconstruction
that can lead to a m_ upper
v

boundary assessment.

A novel technique for reducing the
dead time of the experiment

exploiting the matrix optimum
filter is under study [Here].

The energy is
well-estimated, the

intrinsic resolution of

our TESs is recovered.

Applying an iterative
DSVP routine on a
Wiener filtered dataset
can be a good strategy to

reduce the pile-up
fraction.
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