Status of the HOLMES neutrino mass experiment

Angelo Nucciotti on behalf of the HOLMES collaboration

Università di Milano-Bicocca e INFN - Sezione di Milano-Bicocca

Outline

- ¹⁶³Ho decay calorimetry and neutrino mass measurement
- HOLMES experiment goal and design
- HOLMES tasks status
 - \circ isotope production and chemical purification
 - \circ isotope mass separation and embedding
 - \circ single detector design
 - \circ detector read-out and DAQ
 - \circ detector array fabrication
- conclusions and perspectives

Electron capture calorimetric experiments

electron capture from shell ≥ M1

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- Q = 2.83 keV (determined with Penning trap in 2015)
 - end-point rate and v mass sensitivity depend on $Q E_{M1}$
- $\tau_{\frac{1}{2}} \approx 4570$ years $\rightarrow 2 \times 10^{11}$ ¹⁶³Ho nuclei $\leftrightarrow 1$ Bq

Electron capture calorimetric experiments

- calorimetric measurement ↔ detector speed is critical
- accidental coincidences → complex pile-up spectrum
- $> N_{pp}(E) = f_{pp} N_{EC}(E) \otimes N_{EC}(E) \text{ with } f_{pp} \approx A_{EC} \tau_{R}$

A. Nucciotti, Holmes, NDM2018, 29 June - 4 July 2018, Daejeon, Korea 4

A_{EC} EC activity per detector

\tau_{\mathbf{p}} time resolution (\approx rise time)

Montecarlo simulations: 163 Ho sensitivity potential

 m_v sensitivity mostly depends on: Δ total statistics $N_{ev} = A_{EC} N_{det} t_M$

5

HOLMES (ERC-Advanced Grant n. 340321)

goal

- direct neutrino mass measurement: m, statistical sensitivity around 1 eV
- prove potential and scalability:
 - assess EC spectral shape
 - assess systematic errors

baseline

- low T microcalorimeters with implanted ¹⁶³Ho
 - ► 6.5×10^{13} atom/det $\rightarrow A_{ec} = 300 \text{ c/s/det}$
 - ► $\Delta E \approx 1 \text{ eV}$ and $\tau_R \approx 1 \mu s$
- 1000 channel array
 - ► $6.5 \times 10^{16 \ 163}$ Ho nuclei → $\approx 18 \ \mu g$
 - ► 3×10¹³ events in 3 years

exposure $N_{det}t_{M} = 1000 \text{ det} \times 3 \text{ y}$

5 years project started on February 1st 2014 (now extended by 1 year)

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112

HOLMES collaboration

NIST

B.Alpert

Univ. Milano-Bicocca INFN Milano-Bicocca

G.Ceruti M.Faverzani E.Ferri A.Giachero A.Nucciotti A.Orlando G.Pessina A.Puiu <u>S.Ragazzi (PI)</u>

INFN Genova

M.Biasotti V.Ceriale G.Gallucci M.De Gerone F.Gatti L.Parodi F.Siccardi INFN Roma M.Lusignoli

INFN LNGS S.Nisi

D.Becker D.Bennett J.Fowler J.Gard J.Hays-Wehle G.Hilton J.Mates C.Reintsema D.Schmidt D.Swetz J.Ullom L.Vale **PSI** R.Dressler S.Heinitz D.Schumann

CENTRA-IST M.Ribeiro-Gomes

> **ILL** U.Koester

> > 7

http://artico.mib.infn.it/holmes

Statistical sensitivity and single pixel activity

Effect of background on sensitivity

Low energy background

- \bullet environmental γ radiation
- γ , X and β from close surroundings
- cosmic rays

```
HOLMES target
for A<sub>EC</sub> = 300 Bq
bkg < ≈0.1 c/eV/day/det
```


Au pixel 200×200×2 µm³

▷ GEANT4 → bkg ≈ 5×10⁻⁵ c/eV/day/det (0 - 4 keV)

MIBETA experiment: $300 \times 300 \times 150 \ \mu\text{m}^3 \text{ AgReO}_4$ crystals at **sea level bkg(2-5keV)** \approx **1.5** \times **10**⁻⁴ **c/eV/day/det**

internal radionuclides

- $_{\triangleright}$ ^{166m}Ho (β^{-} , Q = 1.8 MeV, $\tau_{_{1\!/_{\!2}}}$ = 1200 y, produced along with 163 Ho)
- ▷ GEANT4 → bkg ≈ 0.5 c/eV/day/det/Bq(^{166m}Ho)

 $\triangleright A(^{163}Ho) = 300Bq/det (\leftrightarrow \approx 6.5 \times 10^{13} \text{ nuclei/det})$

 $bkg(^{166m}Ho) < 0.1 c/eV/day/det \rightarrow A(^{163}Ho)/A(^{166m}Ho) > 1500$

 $\rightarrow N(^{163}\text{Ho})/N(^{166m}\text{Ho}) > 6000$

¹⁶³Ho production by neutron activation

¹⁶²Er (n,
$$\gamma$$
) ¹⁶³Er $\sigma_{\text{thermal}} \approx 20b$
¹⁶³Er \rightarrow ¹⁶³Ho + ν_{e} $\tau_{\frac{1}{1/2}}^{EC} \approx 75$ min

HOLMES needs \approx 200 MBq of ¹⁶³Ho

with reasonable assumptions on the (unknown) global embedding process efficiency...

- ¹⁶²Er irradiation at ILL nuclear reactor (Grenoble, France)
 - ► thermal neutron flux at ILL: 1.3×10¹⁵ n/cm²/s
 - ► **burn up** ¹⁶³Ho(n, γ)¹⁶⁴Ho: $\sigma_{\text{burn-up}} \approx 200b$ (preliminary result from **PSI** analysis)
 - ▶ ¹⁶⁵Ho(n, γ) (mostly from ¹⁶⁴Er(n, γ)) → ^{166m}Ho (β , $\tau_{\frac{1}{12}}$ =1200y) → A(¹⁶³Ho)/A(^{166m}Ho)=100~1000
- chemical pre-purification and post-separation at PSI (Villigen, CH)

HOLMES source production

- enriched Er₂O₃ samples irradiated at ILL and pre-/post-processed at PSI
 - ► 25 mg irradiated for 55 days (2014) \rightarrow **A(**¹⁶³Ho) \approx 5 MBq (A(^{166m}Ho) \approx 10kBq)
 - ► 150 mg irradiated for 50 days (2015) \rightarrow A(¹⁶³Ho) \approx 23 MBq (A(^{166m}Ho) \approx 37kBq)
- Ho radiochemical separation with ion-exchange resins in hot-cell at PSI
 - ► efficiency ≥79% (preliminary)
- **540 mg of 25% enriched Er₂O₃** irradiated 50 days at **ILL** in 2017 (separation in progress)
 - ► $A(^{163}Ho)_{theo} \approx 100 \text{ MBq}$ (enough for R&D and 500 pixels) ($A(^{166m}Ho) \approx 180 \text{kBq}$)

S. Heinitz et al., submitted to PLOSE ONE

HOLMES mass separation and ion implantation

HOLMES ion implantation system testing

sputter ion source —

- tests in progress
 - without focussing
 - ► with natural Ho
- triplet and scanning stages ready to be installed

Ion source sputter target production / 1

- metallic holmium sputter target for implanter ion source
- enriched $Er_2O_3 \rightarrow Ho_2O_3$
- thermoreduction/distillation in furnace
 - ► $Ho_2O_3 + 2Y(met) \rightarrow 2Ho(met) + Y_2O_3$ at $T > 1600^{\circ}C$
- new furnace set-up in 2016
- work in progress to
- ► optimize the process
- ► measure efficiency (**≈70%**, preliminary)

evaportated metallic holmium

Ion source sputter target production / 2

- metallic holmium sputter target for implanter ion source
 - ► work is in progress to produce the sputter target
 - ► sintering Ho with other metals

TES low temperature microcalorimeters

Superconducting transition edge sensors (TES)

18

- superconductor thin films operated inside the phase transition at T_c
 - ▶ metal-superconductor bilayers → tunable T_c (20÷200 mK) : Mo/Cu, Ti/Au, Ir/Au, ...
- high sensitivity $TdR/(RdT) \approx 100) \rightarrow$ high energy resolution
 - ► as thermal sensors → thermodynamical fluctuation limited → $\sigma_E^2 \approx \xi^2 k_B T^2 C$
- strong electron-phonon coupling → high intrinsic speed
- low impedance → SQUID read-out → multiplexing for large arrays

TES absorber design: stopping EC radiation / 1

Geant4 + LowEnergyEM MC simulation

TES absorber design: stopping EC radiation / 2

Geant4 + LowEnergyEM MC simulation

HOLMES pixel design and test

optimize design for speed and resolution

▷ specs @3keV : $\Delta E_{FWHM} \approx 1eV$, $\tau_{rise} \approx 10\mu s$, $\tau_{decay} \approx 100\mu s$

- 2 μm Au thickness for *full* electron and photon absorption
- **side-car** design to avoid TES proximitation and G engineering for τ_{decav} control
- NIST designed and fabricated 4×6 arrays of TES prototypes for optimization w/o ¹⁶³Ho

HOLMES array read-out: rf-SQUID

HOLMES array read-out: microwave multiplexing

23

HOLMES DAQ: Software Defined Radio

- base-band tone generation (0-512MHz)
- up- / down-conversion (base-band \rightarrow 4-8 GHz \rightarrow base-band)
- base-band tone IQ de-modulation (0-512MHz)
- rf-SQUID phase signal de-modulation by Fourier analysis

HOLMES detector design

design mostly driven by **read-out bandwith** requirements

TES microwave multiplexing with rf-SQUID ramp modulation + Software Defined Radio (SDR)

→ check for slew rate, τ_{R} and $\Delta E...$

HOLMES µwave multiplexed TES read-out

• squid noise $< \approx 2 \ \mu \Phi_0 / \sqrt{Hz}$ A. Nucciotti, Holmes, NDM2018, 29 June - 4 July 2018, Daejeon, Korea

Cryogenic set-up

detector holder mounted with calibration source

LHe-free dilution fridge

- 1 HEMT + 2 coax RF lines
- → **8** µmux chips
- \rightarrow **256** detectors

detector holder

TES pixel testing with HOLMES DAQ / 1

ROACH-2 based Software Defined Radio

- ADC (550 MS/s 12bit) / DAC (1 GS/s 16bit)
- discrete components IF circuitry (up- / down- conversion)
- $n_{_{\Phi 0}}$ = 2 , $f_{_{\mathrm{samp}}}$ = 500 kS/s
- 16 ch firmware from NIST (uses only half of available ADC bandwidth)

HOLMES prototypes

- 4 HOLMES prototypes acquired ↔ limited by available tone power
- **goals**: check algorithms, noise, ΔE , τ_{R} and slew rate

TES pixel testing with HOLMES DAQ / 2

Rise time pile-up

simple pulse model

$$\mathbf{A}(t) = \mathbf{A}(\mathbf{e}^{-t/\tau_{decay}} - \mathbf{e}^{-t/\tau_{rise}})$$

$\Delta t = 15 \ \mu s$ $\Delta t = 10 \ \mu s$ $\Delta t = 5 \ \mu s$ $\Delta t = 3 \,\mu s$ 0.8 amplitude [a.u.] 6.0 0.2 0 20 40 20 40 0 20 40 20 40 0 0 0 time [µs]

resolving time $\tau_{R} \approx$ pulse rise time τ_{rise}

2 pulses with:

- τ_{rise}= 1.5 μs
- $\tau_{decay} = 10 \ \mu s$
- $A_2/A_1 = 0.5$

Detector time resolution

- for subsequent (Δt) events with energy E_1 and E_2 : time resolution $\mathbf{\tau}_{\mathbf{R}} = \mathbf{\tau}_{\mathbf{R}}(E_1, E_2)$ $N_{pp}(E) = A_{EC} \int_{0}^{\infty} \mathbf{\tau}_{\mathbf{R}}(E, \epsilon) N_{EC}(\epsilon) N_{EC}(E - \epsilon) d\epsilon$
- Montecarlo pile-up spectrum simulations
 - ▷ event pairs with $E_1 + E_2 \in [2.4 \text{ keV}, 2.9 \text{ keV}]$ (drawn from ¹⁶³Ho spectrum), $\Delta t \in [0, 10 \mu s]$
 - \triangleright pulse shape and noise from NIST TES model, sampled with f_{samp} , record length, and n bit
- process with pile-up detection algorithms:

Wiener Filtering

→ τ_R ≈ 3 μs

• Singular Value Decomposition

→ τ_R ≈ 1.5 µs

HOLMES array design and fabrication

- TES array fabrication after first steps at NIST
- 163 Ho implantation and final 1 μ m Au layer deposition
- final micromachining step definition in progress
- 4×16 sub-array for low parasitic L and high implant efficiency

Target chamber for absorber fabrication / 1

- ¹⁶³Ho ion beam sputters off Au from absorber (\approx 26 Au/Ho)
 - ► implanted ¹⁶³Ho concentration in absorber saturates
 - compensate by Au co-evaporation
- final 1 μ m Au layer in situ deposition
 - ► to prevent Ho oxidization

Target chamber for absorber fabrication / 2

- Ion Beam Sputtering system for on-line deposition
- up to 4 ECR ion beam sources
- testing / optimization in progress with 1 ECR source
 - Au deposition rate control and maximization
 - Au film quality and uniformity characterization

Detector array fabrication

two options for membrane release (i.e. final array fabrication step)

- Silicon Deep Reactive Ion Etching (DRIE)
- best for close packing and high implant efficiency
- not yet properly tuned \rightarrow work in progress

- Silicon KOH anisotropic wet etching
- requires more spacing between pixels
- succesfully tuned \rightarrow HOLMES baseline

A. Nucciotti, Holmes, NDM2018, 29 June - 4 July 2018, Daejeon, Korea

beam

MHM

calculated

¹⁶³Ho widt

Conclusions

- first detector arrays are being fabricated at NIST
- first ion implantation tests with ¹⁶³Ho before the end of 2018
 - ▶ first not-optimized ion implanted detectors late in 2018
- ¹⁶³Ho implanted activity optimized during 2019
 - ▶ first high ¹⁶³Ho activity array running in 2019
 - ▶ 1 month data taking can provide a m_v statistical sensitivity ≈10 eV
 - full array deployment will follow

Backup...

Worst case scenarios...

TES absorber design: stopping EC radiation / 1 b

Geant4 + LowEnergyEM MC simulation

2keV electrons

full thickness: 0.05, 0.1, 0.5, 1, 2, 2 μm

Low energy background: **y** sources

HOLMES pixel design and test

• optimize design for speed and resolution

▷ specs @3keV : $\Delta E_{FWHM} \approx 1eV$, $\tau_{rise} \approx 10\mu s$, $\tau_{decay} \approx 100\mu s$

- 2 μm Au thickness for *full* electron and photon absorption
- **side-car** design to avoid TES proximitation and G engineering for τ_{decay} control

TES prototypes w/o ¹⁶³Ho: fabrication & test @ NIST

