Probing the absolute neutrino mass scale with the ¹⁶³Ho: the HOLMES project

M. De Gerone INFN Genova on behalf of the HOLMES collaboration

Neutrino Oscillation Workshop 2014 Conca Specchiulla, Sep. 7-14 2014

Outline

- V mass direct measurement
- The ¹⁶³Ho electron capture spectrum calorimetric measurement
- The HOLMES project:
 - ¹⁶³Ho preparation
 - μ-calorimeter design, production and implantation with ¹⁶³Ho
 - Expected sensitivity and schedule
 - Conclusions

Direct V mass measurement

Kinematics of weak decay with V emission:

- low Q nuclear β decays (³H, ¹⁸⁷Re, ¹⁶³Ho...)
- model independent: only E, p conservation
- V mass appears as a distortion in the Kurie plot

- 2 different approaches:
 - spectrometry: source placed outside the detector (KATRIN approach)
 - calorimetry: source embedded inside the detector (ECHO, MARE, HOLMES approach) \Rightarrow low T µ-calorimeters

100 um

AGREO

M. De Gerone, NOW 2014

The **HOLMES** project

ERC Advanced Grant 2013 Research proposal [Part B1]

Principal Investigator (PI): Prof. Stefano Ragazzi PI's Host Institution for the project: Istituto Nazionale di Fisica Nucleare

The Electron Capture Decay of ¹⁶³Ho to Measure the Electron Neutrino Mass with sub-eV sensitivity

HOLMES

INFN/Uni Mi-Bi:A. Nucciotti INFN Ge: F. Gatti

Project started in Feb 2014

- Transition edge sensor with ¹⁶³Ho implanted Au absorber
- ~6.5×10¹³ nuclei/detector \Rightarrow A_{EC} ~300Bq;
- 1000 channels / array with multiplexed read-out
- $\Delta E \sim IeV$ and $\tau_r \sim I\mu s$
- Probe the capability of this approach for a larger scale experiment

¹⁶³Ho electron capture

163
Ho + e⁻ \rightarrow Dy^{*} + ν_e

 $\frac{d\lambda_{EC}}{dE_{c}} = \frac{G_{\beta}^{2}}{4\pi^{2}} \left(Q - E_{c}\right) \frac{\sqrt{\left(Q - E_{c}\right)^{2} - m_{\nu}^{2}}}{\sqrt{\left(Q - E_{c}\right)^{2} - m_{\nu}^{2}}} \times \sum n_{i} C_{i} \beta_{i}^{2} B_{i} \frac{\Gamma_{i}}{2\pi} \frac{1}{\left(E_{c} - E_{i}\right)^{2} + \Gamma_{i}^{2}/4}$

Q~2.55KeV, capture only from shell ≥ MI De Rujula & Lusignoli, Phys. Lett. B 118 (1982) 429 same factor as β decay (total de-excitation energy E_c instead of E_e)

Breit-Wigner shapes

calorimetric measurement of Dy^{*} de-excitation
"good" event rate and ∨ mass sensitivity depends on Q-value (~1/Q³)
τ_{1/2} ~ 4570 years → few active nuclei needed

¹⁶³Ho electron capture: issues

HOLMES baseline sensitivity

HOLMES tasks

- ¹⁶³Ho isotope production and purification;
- isotope embedding in detector;
- single TES design and optimization;
- array engineering;
- SQUID read-out and multiplexing optimization and testing;
- online/offline signal processing and analysis.

Ho production and purification

- ¹⁶²Er (n, γ) ¹⁶³Er, $\sigma_{therm} \sim 20 \text{ b}$
- 163 Er + e⁻ \rightarrow 163 Ho + v_e (T_{1/2} ~ 75 m)
- high yield (but not all cross sections are well known)
 - •~3x10¹² ¹⁶³Ho nuclei/mg(¹⁶²Er)/h
- requires ¹⁶²Er enrichment and oxide chemical form (Er₂O₃)

But contamination from other isotopic species: • ¹⁶⁴Ho from ¹⁶³Ho (n, γ) activation ? • ¹⁶⁵Ho (n, γ) ^{166m}Ho (β , $\tau_{1/2}$ ~ 1200 years) • from Ho contamination or ¹⁶⁴Er (n, γ) • need high purification of sample

Ho production and purification

¹⁶³Ho separation from Dy, Er and others...

- radiochemistry (before/after activation process)
- magnetic mass separation

 Ho_2O_3 thermo-reduction in Knudsen cell provides a metallic sample for the implantation:

- $Ho_2O_3 + Y(met) \rightarrow Ho(met) + Y_2O_3 @2000K$
- First test already performed in Genova

Ho production and embedding

Single detector/array design

- •Mo/Cu bilayers, T_c ~ 100mK
- µ-calorimeter with electrothermal feedback
- ~3µm thick Bi absorber with 163Ho/Au source for full absorption
- source: thin electrodeposited Au encapsulating implanted Holmium
- •TES fabricated by NIST
- •Ho implantation and membrane release in GE

Detector production

Cu

DAQ

rf-SQUID readout with microwave MUX

- DC biased tes
- microwave rf-SQUID read out with flux ramp modulation

ROACH2-based MUX

- •Xilinx FPGA based digital data processing
- frequency comb generation (up to 60 tones in 0-550MHz band)
- GHz band up/down conversion (5 5.5 GHz)
- I-Q signals (homodyne detection) de-multiplexing
- signal channelizing and rf-SQUID signal de-modulation
- real time signal processing $\rightarrow \sim 140$ TB in 3 years

Out

Source of background

Environmental γ radiation:

- Compton interactions, photoelectric interactions with photoelectron escape;
- Fluorescent X-rays and X-ray escape lines;
- γ and β from close surroundings;
- Cosmic rays at sea level (muons):
- TES@NIST(1600m):350×350×2.5µm³ Bi absorbers:

⇒ b < I c/eV/d/det (preliminary);

A. Nucciotti, submitted to EPJC, arXiv: 1405:5060

A flat background is negligible as long as it is smaller than the pile-up spectrum:

$b < A_{EC} \times f_{PP} / 2Q$

Other simulations are on-going to study the effect due to contaminations internal to the detector - mainly β and EC decaying isotopes \Rightarrow quality of Ho sample is crucial.

Status and schedule

Project year	20)14	20	15	20	16	20	17	20	18
Tasks	6	12	18	24	30	36	42	48	54	60
Isotope production	_	_								
TES pixel optimazion / absorber implantation	_	_	_							
Array design and production			_			_	_			
Multiplexed read-out	_	_								
Room Temperature electronics and data processing	_	_	_							
Single pixel high resolution ¹⁶³ Ho spectrum measurement										
16x16 array measurement					1	_	l i			
HOLMES measurement										

- The HOLMES project started in Feb 2014.
- Current main activities:
 - test on isotope preparation (¹⁶²Er activation, sample purification)
 - ion implanter designing
 - first ¹⁶³Ho sample and implantation expected by mid 2015
 - single TES design and optimization (in collaboration with NIST)
 - single pixel test (¹⁶³Ho spectrum measurement) by fall 2015
 - development of the multiplexed read-out
 - development of the room temperature electronics and data processing

Conclusions

- HOLMES is a new project which aims to directly measure the V mass
 started in Feb 2014, funded by ERC Grant #340321.
- Its goal is to study the end-point of ¹⁶³Ho electron capture spectrum by using a ~1000 channels array of μ -calorimeters with ¹⁶³Ho implanted.
 - Probe this approach for a future larger scale experiment.
- The development of the first prototype is on-going:
 - Ho distillation, purification and embedding in the detector
 - single detector designing and optimization
 - first DAQ channels prototype
- We expect to measure the first Ho spectrum by end of 2015.
- Hope to see you again in NOW 2016 with the first results!

Back up slides

Low T calorimetry in a nutshell

- Complete energy thermalization (ionization, excitation \rightarrow heat \rightarrow calorimetry)
- $\Delta T_{max} = E/C, C$ is the total thermal capacity
 - absorber with low thermal capacity
 - for superconductors below T_C and dielectric: $C \sim (T/\theta_D)^3$ (Debye law)
 - very low T is needed (10÷100mK)
- $\Delta E_{rms} = (k_b T^2 C)^{1/2}$ due to statistical fluctuations of internal energy
- $\Delta T(t) = E/C e^{-t/\tau}$, $\tau = C/G$ and G is the thermal conductance

Expected sensitivity

Q = 2600eVb = 0 counts/s/eV/det N_{ev} = 10¹⁴

Expected sensitivity, Q~2.2KeV

required exposure for $m_v=0.2eV$ sensitivity Ν ΔΕ Α Exposure Т [µs] [Hz] [eV] [det*year] [counts] 5000 pixels/array; 2.8x10 9x10 1 1 1 • 3 arrays; 0.1 1.3x10 4.3x10 1 1 100 0.1 4.6x10 • I years of live-time; 1.5×10 1 0.1 2.8x10 9.0x10 10 1 • 2x10¹⁷ nuclei of ¹⁶³Ho 4.6x10 10 1 1 1.5x10

required exposure for $m_v=0.1 \text{ eV}$ sensitivity

	Exposure [det*year]	N [counts]	ΔE [eV]	т [µs]	A [Hz]
	3.9x10	1.2x10	0.3	0.1	1
-	2.0x10	6.4x10	0.3	0.1	100
	2.4x10	7.4x10	1	0.1	100
	1.5x10	4.5x10	1	0.1	10
	2.4x10	7.4x10	1	1	10

ls/array;

- of live-time;
- clei of ¹⁶³Ho

background = 0

M. De Gerone, NOW 2014

Expected sensitivity, Q~2.8KeV

required	exposure	for m _v =0	.2eV sensit	ivity	
A [Hz]	т [µs]	ΔE [eV]	N [counts]	Exposure [det*year]	• 60000 pixels/array:
1	1	1	0.2x10	7.6x10	– – – – – – – – – –
1	0.1	1	1.6x10	5.3x10	• 5 arrays;
100	0.1	1	9.8x10	3.1x10	 • 5 years of live-time;
10	0.1	1	3.8x10	1.2x10	• 4x10 ¹⁸ nuclei of ¹⁶³ H
10	10 1	1	9.8x10	3.1x10	

required exposure for $m_\nu {=} 0.1 \, eV$ sensitivity

A [Hz]	т [µs]	ΔE [eV]	N [counts]	Exposure [det*year]
1	0.1	0.3	2.6x10	8.2x10
100	0.1	0.3	1.9x10	5.9x10
100	0.1	1	1.6x10	5.0x10
10	0.1	1	6.1x10	1.9x10
10	1	1	1.6x10	5.0x10

- 10⁶ pixels/array;
- 6 arrays;
 - 10 years of live-time;
 - 8x10¹⁹ nuclei of ¹⁶³Ho

background = 0

0

Spectrometry vs calorimetry

General requirements for a ν mass experiment:

- High statistics near the end point
 - low Q-value (stat $\sim I/Q^3$)
 - high activity/efficiency of the source
- Energy reso order ~eV or below (comparable with m_{ν})
- S/N ratio
- small systematic effects

Spectroscopy: source ∉ detector

- high statistics
- high energy resolution (below eV)
- systematics due to the source (energy loss)
- systematics due to decay to excited states
- background

Calorimetry: source ⊂ detector

- no backscattering
- no energy loss in source
- no solid state excitation
- no atomic/molecular final state effects
- good energy resolution (~eV)
- limited statistics
- systematics due to pile-up
- background