New low temperature and superconductivity technology challenges

Angelo Nucciotti

Dip. di Fisica "G. Occhialini", Università di Milano-Bicocca, Italia INFN - Sezione di Milano-Bicocca, Italia

IFD2015

INFN Workshop on Future Detectors 16-18 December 2015 - Torino - Italy

Sensor technologies for LTD

Outline

Low Temperature Detector (LTD) sensor technologies

- Transition Edge Sensors (**TES**)
 - ► TES microcalorimeters
 - ► HOLMES TES
- Magnetic Metallic Calorimeters (MMC)
 - ► ECHo MMC
- Kinetic Inductance Detectors (**KID**)
 - KID for athermal phonon detection
 - ► CALDER KID
 - ► thermal KID
- KID microwave multiplexing
 - detector microwave multiplexing by upconversion

Superconducting transition edge sensors (TES)

- superconductor thin films used inside the phase transition at T_c
 - ▶ pure superconductors: Ir (T_c = 112 mK), W (T_c = 15 mK), ...
 - ▶ metal-superconductor bilayers ⇒ tunable T_c (20÷200 mK) : Mo/Cu, Ti/Au, Ir/Au, ...
- high sensitivity ($A \approx 100$) \Rightarrow high energy resolution
 - ► as thermal sensors $\rightarrow \sigma_{\rm E}^2 \approx \xi^2 k_{\rm B} T^2 C$
 - also as athermal sensors
- high electron-phonon coupling ⇒ high intrinsic speed
- Iow impedance ⇒ SQUID read-out ⇒ multiplexing for large arrays

TES for massive LTDs: direct Dark Matter searches

- thin film deposition
- photolithographic patterning

SuperCDMS 600g Ge

TES microcalorimeters / 1

TES microcalorimeters / 2

X-ray spectroscopy

XES, EXAFS, XANES, RSXS ... time resolved X-ray spectroscopy

- 240 pixels, 23.4 mm² active area, 30% fill factor
- Code Division SQUID multiplexing
- $\Delta E \approx 2.5 \text{ eV}$ at 6 keV
- 80% Quantum Efficiency at 6 keV

J. Ullom et al. SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 28 (2015) 084003

A. Nucciotti, IFD 2015, December 16th, 2015

7

Metallic Magnetic Calorimeters (MMC)

 $\delta E \rightarrow \delta M \rightarrow \delta \Phi$

- paramagnetic temperature sensor
 - ► Au:Er, Ag:Er, PbTe:Er, Dy:W, W:Fe ...

Er³⁺, J = 15/2 • dc-SQUID read-out

- high energy resolution with metallic absorbers
- ▶ fast rise time (≈100ns)
- high C
 - massive absorbers
 - high linearity
- no power dissipation in the sensor
- multiplexing by frequency up-conversion

MMC development at Heidelberg

A. Nucciotti, IFD 2015, December 16th, 2015

9

Electron capture end-point experiments

¹⁶³Ho + $e^- \rightarrow {}^{163}$ Dy* + ν_e

 10^{6}_{0}

0.5

electron capture from shell \ge M1

2.546

2.548

A. Nucciotti, IFD 2015, December 16th, 2015

A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

2.554

2.556

10

2.552

2.55

energy [keV]

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- rate at end-point and v mass sensitivity depend on Q

1.5

energy [keV]

2

- Past measurements: Q = 2.3÷2.8 keV. Recently measured Q = 2.83±0.04 keV
- $\tau_{\frac{1}{12}} \approx 4570$ years \rightarrow few active nuclei are needed

2.5

m, statistical sensitivity: Montecarlo simulations

- 2×10^{11} ¹⁶³Ho nuclei \rightarrow 1 decay/s
- ¹⁶³Ho production: p.e. neutron irradiation of ¹⁶²Er enriched Er
- embed ¹⁶³Ho in thermal detectors for low energy X-rays spectroscopy

ECHo MMC microcalorimeters

- 16x MMC with sandwiched Au absorber
- chemically purified ¹⁶³Ho
- offline ¹⁶³Ho implantation at ISOLDE (CERN)
- A(¹⁶³Ho) = 0.1 Bq/pixel
- $\Delta E \approx 5 \text{ eV}$
- $\tau_{_{rise}} \approx 130 \text{ ns}$

• **ECHo-1k**: 100 pixels, *A*(¹⁶³Ho) = 10 Bq/pixel

12

ECHo

HOLMES TES microcalorimeters ERC AdG

- Transition Edge Sensors (TES) with Au (or Bi) absorber
 - $\triangleright~2~\mu m$ Au total thickness for *full* electron and X absorption
- MoCu proximity TES $\rightarrow T_c \approx 100 \text{mK}$
- on Si₂N₃ membrane
- optimize design for speed and resolution
 - specs @2.5keV :
 - $\Delta E_{\text{FWHM}} \approx 1 \text{eV}$
 - $\tau_{rise} \lesssim 5\mu s$, $\tau_{decay} \approx 100\mu s$
- from preliminary X-ray measurements:
 - ▷ Δ $E_{\text{FWHM}} \approx 3 \text{ eV}, \ \tau_{\text{rise}} \approx 5 \ \mu\text{s}, \ \tau_{\text{decay}} \approx 150 \ \mu\text{s}$

HOLMES TES prototypes

13

A. Nucciotti, IFD 2015, December 16th, 2015

MFS

erc

HOLMES detector array fabrication

- TES fabricated at NIST, Boulder, CO, USA
- ¹⁶³Ho implantation at INFN Genova
- **HOLMES**: 1000 pixels, *A*(¹⁶³Ho) = 300 Bq/pixel

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112

KID: an alternative to TES?

Development of microresonator detectors for neutrino physics 2011 – 2015 @ UniMiB

fondazione c a r i p l o

> direct neutrino mass measurement with ¹⁶³Ho electron capture (0-3 keV)

athermal microresonators

thermal-mode microresonators sensors for neutrinoless double beta decay searches (0-5 MeV)

large area single photon detection?

KID principles: athermal mode

first developed as radiometers for mm astronomy

KID homodyne read-out

T = 300 K

microwave frequency multiplexing

device i is read out tuning the RF carrier to f_i

Advanced materials for KIDs at FBK

sub-stoichiometric TiN,

- ▶ tunable T_c (0 → 4.5K) by adjusting x < 1 → longer τ_{ab} for lower T_c
- ▶ low losses → high Q_i devices
- no surface oxide \rightarrow low excess (TLS) noise
- high surface inductance fraction $\alpha \rightarrow$ large signals
- hard to produce in a controlled way

Ti/TiN sputtered multilayer (stoichiometric TiN)

- proximity effect $\rightarrow T_c$ tuned by Ti and/or TiN thicknesses
 - ▶ good T_c control: tuning range **0.5** → **4.5K**
 - **•** high Q_i and high $\alpha = L_s/L_{tot}$
 - good reproducibility and uniformity
 - equivalent to sub-stoichiometric TiN,

A. Giachero et al. J. Low Temp. Phys. 176 (2014) 155

T _C [K]	Δ [meV]	α	L _S [pH/sq]	Qi
1.5 0.640	$\begin{array}{c} 0.200 \pm 0.004 \\ 0.091 \pm 0.001 \end{array}$	$\begin{array}{c} 0.26\pm0.01\\ 0.95\pm0.01\end{array}$	13.1 36.9	< 10 ⁵ < 10 ⁴

Microresonator X-ray characterization

Microresonator X-ray response

Microresonator detector improvements

- fast **qp diffusion** in Tantalum → no saturation
- **qp trapping** in TiN/Ti: Δ(Ta)>Δ(TiN/Ti)
- Tantalum: high Z → **high stopping power**
- Tantalum thickness: 200 / 500 nm

Beyond CUORE: CUPID

- Excluding **Inverted Hierarchy** \rightarrow improve **CUORE** sensitivity by 5÷10
- CUORE upgrade with Particle ID (CUPID) → reduce bkg from alphas

α/γ discrimination with Cherenkov (T.Tabarelli de Fatis, EPJC65 (2010) 359)

CUPID: TeO₂ with Cherenkov

TeO₂ 770g (CUORE size)

 Detected light not sufficient for event by event discrimination
 LY≈45 eV/MeV

□ ≈100 eV for β/γ @ $Q_{\beta\beta}$ (S/N≈1.2)

- 10 times less than expected
- Montecarlo simulation
 Cherenkov light is self absorbed
 more sensitive light detectors
- 5 year sensitivity to ¹³⁰Te ββ-0ν
 CUORE + Cherenkov detection
 with/without enrichment
 - □ γ bkg (10⁻³ c/keV/kg/y) dominates for S/N≥5

N. Casali et al., EPJ C75 (2015) 12 arXiv:1403.5528v1;

CALDER project ERC StG / FIRB

• CALDER Target

- 50x50 mm² light detector
- $\blacktriangleright E_{\rm thres} = 20 \, {\rm eV}$
- ► *T*_{op} = 10 mK

• Baseline detector design

- athermal phonon KID
- Si substrate with up to 10 KID

E. S. Battistelli et al. EPJ C 75 (2015) 353

CALDER prototype detectors

A. Nucciotti, IFD 2015, December 16th, 2015

25

CALDER results

 $E = n_{qp} \Delta = \frac{\delta f_0 / f_0}{p_0} \Delta$

- KID response calibrated in energy
 - summing up the energy absorbed by each KID
 - ▶ phonon collection efficiency $\eta = 18\%$
 - ▶ baseline width $\sigma_{E} = 154 \text{ eV}$
 - unknown low f excess noise dominates-§/N

CALDER planned improvements

- increase phonon collection efficiency ${f \eta}$ by design
- increase $\alpha = L_{k}/L_{tot}$ by design
- increase $\alpha = L_k / L_{tot}$ changing material
 - ▶ non stoichiometric **TiN**_x
 - ► Ti/TiN multilayers
- reduce 1/f excess noise

	Al	TiN [non stoic.]	Ti+TiN [stoich]
T _c [K]	1.2	0.9	>0.4
L _k [pH/square]	0.5	3	30

$$\Delta E \propto \frac{T_c}{\sqrt{Q \eta L_k / L_{tot}}}$$

Thermal-mode microresonators (KIDS_RD @CSN5)

Equivalence of temperature change and external pair breaking

- hv absorption $\rightarrow \Delta T \approx hv/C$
- increase qp density n_{qp}

$$n_{qp}(T) = 2 N_0 \sqrt{2 \pi k T \Delta} e^{-\frac{\Delta}{kT}}$$

• change in complex surface impedance $Z_s = R_s + i\omega L_s$

$$\frac{\delta f}{f_0} = -\frac{\alpha}{2} \frac{\delta L_s}{L_s} \quad \delta Q^{-1} = \alpha \frac{\delta R_s}{\omega L_s}$$

 α surface inductance L_s fraction in circuit inductance

 relaxation time: thermal time constant τ=C/G

- thermal KID ↔ TES replacement
 - simpler micro-fabrication
 - simpler read-out (no SQUID)
 - easier high BW multiplexing
 - ► ΔE ≈ thermodynamic limit

Thermal-mode KID microcalorimeters

KIDS multiplexing: Software Defined Radio

HOLMES array read-out: rf-SQUID µwave mux

HOLMES TES µwave read-out testing

TES microwave multplexing (also for MMC)

Software Defined Radio + flux ramp modulation based on ROACH2

ROACH2 system @ Milano-Bicocca for HOLMES

multiplexing factor

 $N_{mux} = \frac{f_{ADC}}{10 f_{TES}}$

- **f**_{TES} required bandwidth per channel
- $f_{\text{TES}} = n_{\Phi_0} f_{sampl} (f_{sampl} = f_{ramp} \text{ from pile-up simulations})$

$$f_{\text{sampl}} = 0.5 \text{MHz}, n_{\Phi_0} = 2 \rightarrow N_{mux} \approx 50$$

Today LTD sensor technologies

are powerful and flexible tools for cutting edge science applications (largely incomplete review...)

There is room for further improvements to make devices more *friendly* and flexible

Many more applications are possible

Backup slides ...

Neutrino open questions

- mass scale: i.e. mass of the lightest v
- degenerate $(m_1 \approx m_2 \approx m_3)$ or hierarchical masses
 - ▶ mass hierarchy: $m_1 < m_2 \ll m_3$ or $m_3 \ll m_1 \approx m_2$?
- $\mathbf{v} = \overline{\mathbf{v}}$? i.e. Dirac or Majorana particle?
- CP violation in the lepton sector

The Challenge: absolute neutrino mass

CUORE sensitivity potential

* **NME uncertainties** can be reduced by observing $\beta\beta$ -0 ν in many different isotopes

F. Alessandria et al., Sensitivity and Discovery Potential of CUORE to Neutrinoless Double-Beta Decay, arXiv:1109.0494v3 [nucl-ex]

TeO₂ with Cherenkov

- TeO₂ does not scintillate, but MeV βs emit Cherenkov radiation
- threshold for Cherenkov light emission:
 - \triangleright 50 keV for β/γ
 - \triangleright 400 MeV for α
 - $\triangleright \alpha/\gamma$ discrimination is possible (T.Tabarelli de Fatis, EPJC65 (2010) 359)
- Expected light emission: 140 eV/MeV
- Extremely challenging background discrimination

Anomalies and unobserved phenomenologies

- there are anomalies in data from
 - past reactor oscillation experiments (reanalyzed)
 - short baseline accelerator oscillation experiments (LSND, MiniBOONE)
 - solar experiment calibration with neutrino sources (GALLEX)
- call for 4th neutrino mass state $v_4 \rightarrow$ sterile neutrino

 $\Delta m^2 \approx 1 \text{ eV}$ and $\sin^2 2\theta \gtrsim 0.1$

Sterile (Right Handed) neutrinos are a natural extension to the

Standard Model to include the mass of active neutrinos (vMSM)

- ► sterile neutrino in the **keV mass range** are perfect candidate as **Warm Dark Matter** (WDM) particles
- Standard Model also predicts:
 - ► coeherent neutrino scattering on nuclei → never observed!
 - ► cosmic neutrino background (CvB) → never observed!

→ neutrinos probe physics beyond Standard Model

Low temperature detectors as calorimeters

- (quasi-)equilibrium thermal detector
- complete energy thermalization
 - ► calorimetry
- **△T=E/C** (*C* thermal capacity)
 - ► low **C**

 \triangleright low T (i.e. T <<1K)

> dielectrics, superconductors

Pros and cons

- high energy resolution
- Iarge choice of absorber materials
- true calorimeters
- only energy and time informations
- slow time response
- A. Nucciotti, IFD 2015, December 16th, 2015 42

Particle interactions in LTD

M. Chapellier, Nuclear Instruments and Methods in Physics Research A 520 (2004) 21–26

Low temperature detector principles

$$\begin{split} &C(T_{ph})\frac{dT_{ph}}{dt}\!+\!G(T_{ph},T_0)\!=\!P(t) \\ &P(t)\!=\!\Delta E\delta(t) \Rightarrow T_{ph}(t)\!=\!T_0\!+\!\frac{\Delta E}{C}\mathrm{e}^{-t/\tau} \\ &\text{for }t\!>\!0 \text{ and with }\tau\!=\!C/G \end{split}$$

• 750 g of TeO₂ @ 10 mK $C \sim T^{3}$ (Debye) $\Rightarrow C \sim 2 \times 10^{-9}$ J/K $1 \text{ MeV } \gamma \text{-ray} \Rightarrow \Delta T \sim 80 \mu \text{K}$ $G \sim 4 \times 10^{-9}$ W/K $\Rightarrow \tau = C/G \sim 0.5 \text{ s}$ • 1 mg of Re @ 100 mK $C \sim T^{3}$ (Debye) $\Rightarrow C \sim 10^{-13}$ J/K $6 \text{ keV X-ray} \Rightarrow \Delta T \sim 10 \text{ mK}$ $G \sim 10^{-11}$ W/K $\Rightarrow \tau = C/G \sim 10 \text{ ms}$

TES read-out: SQUID

- low impedance suitable for multiplexable dc-SQUID magnetometers
- current amplifier configuration $\triangleright \Delta I \rightarrow \Delta \phi \rightarrow \Delta V$
- feedback linearized response

TES arrays for γ and α with Sn absorbers

1

TES array multiplexing

TDM array multiplexing

Micromachined TES arrays / 1

Statistical sensitivity: Montecarlo simulations / 2

Electron capture end-point experiment / 2

- no direct calorimetric measurement of Q (end-point) so far
- complex pile-up spectrum
- $\succ N_{pp}(E) = f_{pp}N_{EC}(E) \otimes N_{EC}(E) \text{ with } f_{pp} \approx A_{EC}\tau_{R}$

A. Nucciotti, IFD 2015, December 16th, 2015 51

Electron capture end-point experiment / 3

- shake-up/shake-off → double hole excitations
 - n-hole excitations possible but less probable
 - authors do not fully agree on energies and probabilities
- even more complex pile-up spectrum
 - ▶ it may be worth keeping f_{pp} smaller than 10⁻⁴

A.De Rujula, arXiv:1305.4857 R.G.H.Robertson, arXiv:1411.2906 A.Faessler et al., PRC 91 (2015) 45505

A. Nucciotti, IFD 2015, December 16th, 2015 52

HOLMES design: more MC simulations...

Statistical sensitivity $\Sigma(m_v)$ dependencies from MC simulations

- strong on statistics $N_{ev} = A_{EC} N_{det} t_{M}$: $\Sigma(m_{v}) \propto N_{ev}^{1/4}$
- strong on rise time pile-up (probability $f_{pp} \approx A_{EC} \tau_{R}$)

• weak on energy resolution ΔE

 t_{M} measuring time N_{det} number of detectors A_{EC} EC activity per detector τ_{R} time resolution (~rise time)

goal

- neutrino mass measurement: m_{v} statistical sensitivity as low as 0.4 eV
- prove technique potential and scalability:
 - assess EC Q-value
 - assess systematic errors

baseline

- TES with implanted ¹⁶³Ho
 - ► 6.5x10¹³ nuclei per pixel
 → 300 dec/sec
 - ► $\Delta E \approx 1 \text{eV}$ and $\tau_{R} \approx 1 \mu \text{s}$
- 1000 channel array
 - ▶ 6.5x10^{16 163}Ho nuclei
 → ≈18µg
 - ► 3x10¹³ events in 3 years

B. Alpert et al., Eur. Phys. J. C, (2015) 75:112 http://artico.mib.infn.it/holmes

erc

HOLMES detectors

- Transition Edge Sensors (TES) with Au absorber
 - bot electron microcalorimeters with electro-thermal feedback
 - electrodeposited Au for full absorbtion
- MoAu or MoCu proximity TES $\rightarrow T_c \approx 100 \text{mK}$
- on Si₂N₃ membrane

KIDS multiplexing

x 2

