# Final results of the CUPID-0 Phase I experiment

## Mattia Beretta On behalf of the CUPID-0 collaboration

23/05/2019 – LRT – Laboratorio Subterráneo de Canfranc

#### CUPID-0

The first enriched scintillating bolometer  $\beta\beta$  experiment



**Performing resolution** At the Q value **Low Background** Few counts expected

#### **CUPID-0** Detector



#### Heat signal:

bolometric high resolved output

#### Scintillating Zn<sup>82</sup>Se crystals.



#### Bolometric **Ge** Light detectors



Light signal:

particle identification

- 26 ZnSe crystals
  - 24 enriched in  ${}^{82}$ Se (95%) + 2 naturals
- Total mass= 10.5 kg



Vikuiti Reflector More collected light

**NOSV Copper** Surface cleaned

O. Azzolini et al. (CUPID), Eur. Phys. J. C 78, 428 (2018), arXiv:1802.06562

#### **CUPID-0** Time-line



#### Calibrations

#### <sup>232</sup>Th Energy Calibration

- Periodic Bolometer calibration and light detector intercalibration
- Response function: Double Gaussian
  - Also observed in other bolometers





- Check of the energy reconstruction
- Evaluation of FWHM energy resolution @  $^{82}\mathrm{Se}$  Q



**FWHM @**  $Q_{\beta\beta}$ (20.0±0.6) keV

#### $0\nu\beta\beta$ search

**Total Background spectrum** 





#### **Basic Selections**

Rejection of "non-particle-like" events through pulse shape on thermal pulses  $\begin{array}{c} \textbf{Multiplicity (M)}\\ \textbf{Anti-coincidence between}\\ \textbf{crystals } (\Delta T{=}20 \text{ms}) \end{array}$ 



#### Background – Alpha Rejection



6/17

#### **Background – Delayed coincidences rejection**



 $\rightarrow$  Veto for 7 half-life

#### Selection of $^{212}\mathrm{Bi}\ \alpha$ events

- $\alpha$  pulse shape
- 2.0 MeV<Energy<6.5MeV
  - Degraded tag

#### **Background – Delayed coincidences rejection**



# A complete model of the background sources



Experimental data for the model

Divided according to multiplicity and particle type

- M1  $\alpha \beta / \gamma$
- M2 / M2 sum ( $\Sigma 2$ )
- M>3 (to constraint Muons)





Background source identification

#### **Background sources**

• Localization in the detector



• Radiation type

## Natural Chains

• Fathers + saecular equilibrium breaking points

# Single isotopes

• 40K, 54Mn, 65Zn, 60Co, ...

## Muons

• Depth of contamination



Monte Carlo simulations

Generation

Detection

O. Azzolini et al. (CUPID), (2019), arXiv:1904.10397 [nucl-ex].

MODEL

• 33 background sources



Experimental signatures –  $\alpha/\alpha$  coincidences

Previous contamination measurements
– Reflective foil



#### **Reconstruction results: M1 Spectra**

- Full spectrum reconstruction
- Peaks and continuum are well modelled



The  $\alpha - \beta/\gamma$  separation allows to disentangle the different contributions

O. Azzolini et al. (CUPID), (2019), arXiv:1904.10397 [nucl-ex].

#### **Reconstruction results:** M2 spectra

- Both  $\alpha$  and  $\beta/\gamma$  regions are well modelled in peaks and continuum – The surface/bulk prior is a key ingredient



#### **Result: Beta/Gamma spectrum**



## Phase II upgrade

•  $\mu$  are the main residual background – Installation of  $\mu$ -veto





New clear Cu Shield

- Thermalization
- Additional shielding



# No reflective foil

 $- \begin{array}{c} {\rm Sensitivity \ to} \\ {\rm M2} \ \alpha \ {\rm events} \end{array}$ 



## **CUPID 0: current results and future perspectives**

- CUPID-0 is the first large array of enriched scintillating bolometers
- We reached the lowest background level achieved with bolometric experiments:

$$(3.5^{+1}_{-0.9}) \cdot 10^{-3} \text{ cnts}/(\text{keV} \cdot \text{kg} \cdot \text{y})$$

- A complete background model has been developed
  - Major ROI background (<sup>208</sup>Tl  $\beta$  events) is reduced with delayed cut
  - Muons give 44% of residual counts
- Phase II upgrade focused on background improvement
  - Muon veto installed
  - No Reflective foil: M2 alpha events direct tagging
  - Additional shielding