

The 27th International Workshop on Weak Interactions and Neutrinos June 3-8, 2019 - Bari, Italy

FINAL RESULTS OF THE CUPID-0 PHASE I EXPERIMENT

Davide Chiesa

University and INFN of Milano-Bicocca

On behalf of the CUPID-0 collaboration

CUPID-0 FOR CUPID (CUORE UPGRADE WITH PARTICLE ID)

CUPID is a proposed $0\nu\beta\beta$ experiment based on scintillating bolometers. Its mission is to discover $0\nu\beta\beta$ decay if $m_{\beta\beta} > 10$ meV.

TECHNICAL CHALLENGES

Detector mass in the range of several hundred kg of the ββ isotope

Isotopic enrichment

Background close to zero at the ton×year exposure scale

Active background rejection and improved material selection

> **Energy resolution** of a few keV (FWHM) around $0\nu\beta\beta$ Q-value $\beta\beta$ energy

CUPID-0 is the first demonstrator of the new technologies that will be implemented in CUPID and it is also a competitive $0\nu\beta\beta$ decay search in its own right.

SCINTILLATING BOLOMETERS

- A bolometer is a highly sensitive calorimeter operated at cryogenic temperature (~10 mK)
- Energy deposits are measured as temperature variations of the absorber
- If the absorber is also an efficient scintillator the energy is converted into heat + light

DETECTOR FEATURES

- > High energy resolution $\mathcal{O}(1/1000)$
- High detection efficiency (source = detector)
- Particle IDentification

A **close-to-zero background** experiment is feasible:

- *α* background: identification and rejection
- γ/β background: $\beta\beta$ isotope with large Q-value

Davide Chiesa - University and INFN of Milano-Bicocca

Bari, Italy - June 07, 2019

THE CUPID-0 DETECTOR

Array of scintillating bolometers for the investigation of 82 Se $0\nu\beta\beta$ (Q = 2997.9 ± 0.3 keV).

- 95% enriched Zn⁸²Se bolometers
- 10.5 kg of ZnSe, 5.17 kg of ⁸²Se (3.8×10²⁵ $\beta\beta$ nuclei)
- Ge bolometers at top/bottom of crystals to detect scintillation
- NTD thermistors to measure energy depositions
- Reflecting foils to enhance light collection
- High radiopure copper holder structure

ZnSe crystal

Ge light detector

Bari, Italy - June 07, 2019

CUPID-0 @ LNGS

- Deep underground location at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, 1400 m of rock (~3600 m.w.e.)
- Installed in the cryostat previously used for Cuoricino and CUORE-0 experiments

Bari, Italy - June 07, 2019

CUPID-0 DATA TAKING (PHASE I)

- Data taking started on March 17th, 2017
- Data presented here collected between June 2017 and December 2018

Bari, Italy - June 07, 2019

Detector Calibration with $^{232}\mathrm{Th}$

• ²³²Th sources are periodically deployed beside the cryostat for calibration of heat and intercalibration of light detectors

Bari, Italy - June 07, 2019

Detector Calibration with $^{56}\mathrm{Co}$

We performed a calibration run with a ⁵⁶Co source to:

- check the goodness of energy reconstruction
- evaluate the energy resolution at ${}^{82}Se Q_{\beta\beta}$

The exposure-weighted harmonic mean **FWHM energy resolution** at 82 Se $Q_{\beta\beta}$ is equal to:

 $(20.05 \pm 0.34) \text{ keV}$

Bari, Italy - June 07, 2019

Davide Chiesa – University and INFN of Milano-Bicocca

8

$0\nu\beta\beta$ search: heat spectrum production

- Anti-coincidence → tag&reject events depositing energy in more than one ZnSe crystal within a ±20ms window
- Rejection of **pile-up** (1 sec before and 4 sec after trigger)

ββ physics spectrum

• Rejection of "non-particle" events through **pulse shape analysis**

0νββ RoI

Bari, Italy - June 07, 2019

$0\nu\beta\beta$ search: rejection of α particles

• Rejection of α events based on the shape of the light pulse

Bari, Italy - June 07, 2019

Davide Chiesa – University and INFN of Milano-Bicocca

$0\nu\beta\beta$ search: rejection of ²⁰⁸TL events

Analysis of $\alpha - \beta/\gamma$ delayed coincidences:

- o $^{208}\text{Tl} \beta/\gamma$ events are preceded by $^{212}\text{Bi} \alpha$ events
- We veto any event preceded by a primary ²¹²Bi α event within 7 half-life time window
- 212 Bi events are selected among α events with energy in the range 2 6.5 MeV

11

$0\nu\beta\beta$ search: results

Background index in the range [2.8 - 3.2] MeV:

 $(3.5^{+1.0}_{-0.9}) \cdot 10^{-3} \text{ cnts/(keV·kg·yr)}$

Lowest background achieved with bolometric experiments.

No evidence of $0\nu\beta\beta$ signal

Best half-life limit on ⁸²Se $0\nu\beta\beta$ $T_{1/2}^{0\nu} > 3.5 \cdot 10^{24} \text{ yr} (90\% \text{ C.I.})$

 $m_{\beta\beta} < 311 - 638 \ meV$

range due to the nuclear matrix element calculations

Bari, Italy - June 07, 2019

BACKGROUND MODEL

arXiv:1904.10397

Bari, Italy - June 07, 2019

BACKGROUND MODEL: EXPERIMENTAL DATA

• Experimental data divided according to **multiplicity** and **particle type**

 \rightarrow we build 4 spectra

• Analysis of γ and α lines in the spectra.

Bari, Italy - June 07, 2019

Davide Chiesa – University and INFN of Milano-Bicocca

Multiplicity (M)

Time-coincidence window: 20ms M1

BACKGROUND MODEL: MC SIMULATIONS

- Monte Carlo simulations (Geant4) of background sources
- CUPID-0 geometry modelled with high detail
- Reproduction of detector features (coincidences, resolution, particle ID, thresholds, ...)

Bari, Italy - June 07, 2019

BACKGROUND MODEL: SOURCES

Background model uses 33 sources:

- different contaminants (²³²Th and ²³⁸U decay chains, ⁴⁰K, cosmogenic activation, ...)
- different positions in the experimental setup
- Muons

Bulk

BACKGROUND SOURCES

Internal/near sources to fit M1α spectrum

- **Crystals**: bulk / shallow surface $\mathcal{O}(10 \text{nm})$ / deep surface $\mathcal{O}(10 \mu \text{m})$
- Reflectors & Holder surface: shallow surface $\mathcal{O}(10\text{nm})$ / deep surface $\mathcal{O}(10\mu\text{m})$

External sources

- **CryoInt**: 50mK and 600mK cryostat internal shields & holder bulk
- IntPb: ancient roman lead shield
- **CryoExt**: IVC, OVC, superinsulation, main bath & External Lead shield

16

Bari, Italy - June 07, 2019

BACKGROUND MODEL: BAYESIAN FIT

- We perform a simultaneous **Bayesian fit** to M1 α , M1 β/γ , M2, and $\Sigma 2$ spectra to determine source activities (i.e. MC normalizations)
- We use Markov Chain MC to sample the Joint PDF of fit parameters
- **Priors** are exploited to include additional information from previous experiments/radioassay measurements and from special analyses of CUPID-0 data:
 - > Muons \rightarrow normalized to M>3 events
 - > Analysis of α - α delayed coincidences to get information about positions of crystal contaminations.

Bari, Italy - June 07, 2019

Background model: fit result M1 β/γ

Bari, Italy - June 07, 2019

Background model: fit result M1 α

Background model: fit result M2 and $\Sigma2$

- Peaks and continuum are well modelled
- Some differences in BiPo pile-up events, due to imperfect energy reconstruction
- Distribution of fit residuals compatible with a Gaussian with $\mu = 0$ and $\sigma = 1$.

Davide Chiesa – University and INFN of Milano-Bicocca

Bari, Italy - June 07, 2019

BACKGROUND MODEL: RESULTS <u>arXiv:1904.10397</u>

Background sources contributing to the $M1\beta/\gamma$ reconstruction, grouped by position and contaminant:

Other background sources in crystals, reflectors, cryostat & shields, contributing to the RoI at a level of a few 10^{-4} counts/(keV kg y)

Bari, Italy - June 07, 2019

CUPID-0 Phase II: Upgrades

- Muons are main residual background \longrightarrow Installation of μ -veto
- No reflective foil
- New cleaner Cu shield

- Sensitivity to M2 α events
 - Thermalization and additional shielding

Data taking started this week!!!!!

SUMMARY AND FUTURE PERSPECTIVES

- CUPID-0 is the first large array of enriched scintillating bolometers
- CUPID-0 Phase I \rightarrow ZnSe exposure: 9.95 kg·y
- Excellent background index in the 82 Se $0\nu\beta\beta$ RoI:

 $(3.5^{+1.0}_{-0.9}) \cdot 10^{-3}$ counts / (keV · kg · yr)

Acquired data allowed to establish the **best half-life limit** on ⁸²Se 0νββ decay:

 $T_{1/2}^{0\nu} > 3.5 \cdot 10^{24} \text{ yr} (90\% \text{ C.I.})$

- Background model: information on background sources and best measurement of $^{82}\text{Se}~2\nu\beta\beta$ decay (paper in preparation)
- CUPID-0 Phase II \rightarrow better understanding of background sources

Thanks for your attention!!!

Bari, Italy - June 07, 2019