

DOUBLE BETA DECAY RESULTS FROM THE CUPID-0 EXPERIMENT

Davide Chiesa University and INFN of Milano-Bicocca

On behalf of the CUPID-0 collaboration

Searching $0\nu\beta\beta$ decay with cryogenic calorimeters

SCIENTIFIC GOAL

Neutrinoless double beta $(0\nu\beta\beta)$ decay is a portal towards new physics:

- **CUORE SENSITIVITY** Lepton number violation ($\Delta L=2$) (see Andrea Giachero's talk) Next generation Majorana or Dirac nature experiments aim at 10^{3} Insights on neutrino mass **CUORE Preliminary** discovering the $0\nu\beta\beta$ decay if $m_{\beta\beta} > 10 \text{ meV}$ **CHALLENGES** 1vsRevLett.124.12250 10^{2} CUORE sensitivity (Te Inverted hierarchy Increase the number of observed (meV) $\beta\beta$ emitters (>10²⁷ nuclei) $m_{\beta\beta}$ $\mathcal O$ (10³ kg) detector mass & isotopic enrichment Normal hierarchy Background close to zero at the ton × yr exposure scale Other isotopes **Background rejection through particle ID** 10^{2} 10^{-1} 10 m_{lightest} (meV) and improved material selection
- > **Energy resolution** of a few keV (FWHM) @ $0\nu\beta\beta$ Q-value

Scintillating Cryogenic Calorimeters

- > Calorimeters operated at cryogenic temperature (~10 mK)
- > High detection efficiency (source = detector)
- > The crystal absorber is an efficient scintillator \rightarrow the energy is converted into heat & light
- ▶ Heat signal → High resolution spectroscopy $\mathcal{O}(1/1000)$
- \succ Light signal \rightarrow Particle IDentification

Davide Chiesa – University and INFN of Milano-Bicocca

CUPID: CUORE UPGRADE WITH PARTICLE IDENTIFICATION

CUPID is a proposed $0\nu\beta\beta$ next generation experiment (arXiv:1907.09376)

- ➤ Array of 1500 Li₂¹⁰⁰MoO₄ scintillating calorimeters
- Enriched to >95% in ¹⁰⁰Mo (250 kg of ¹⁰⁰Mo)
- > ¹⁰⁰Mo Q-value: 3034 keV $\rightarrow \beta/\gamma$ background significantly reduced
- α background rejections thanks to particle ID capability
- > An external muon veto will be added
- Deep underground location { at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, 1400 m of rock (~3600 m.w.e.)

CUPID will profit from the CUORE experience in operating a **ton-scale cryogenic experiment** and will be hosted in the same CUORE infrastructure

– Background <10⁻⁴ counts/(keV kg yr)

→ 100× reduction with respect to CUORE

Davide Chiesa - University and INFN of Milano-Bicocca

FROM CUORE TO CUPID: CUPID-0

CUPID-0 is the first demonstrator of the new technologies that will be implemented in CUPID and it is also a competitive $0\nu\beta\beta$ decay search in its own right.

- Array of ZnSe scintillating calorimeters for the investigation of ⁸²Se $0\nu\beta\beta$ decay ($Q_{\beta\beta} = 2997.9 \pm 0.3 \text{ keV}$).
- > 24 ZnSe crystals **enriched to 95%** in 82 Se + 2 with natural Se
- ▶ Total Mass: 10.5 kg (ZnSe) \rightarrow 5.17 kg (⁸²Se)
- > Ge wafer cryogenic light detectors for **particle ID**
- Reflecting foils to enhance light collection

ZnSe crystal

Ge light detector

Reflecting foil

Installed @LNGS in the cryostat previously used for Cuoricino and CUORE-0 experiments

https://cupid-0.lngs.infn.it/

CUPID-0 TIMELINE AND DATA TAKING

PARTICLE IDENTIFICATION IN CUPID-0

- > α and β/γ particle energy deposits feature a different shape of the light signal
- > A shape parameter (SP) is defined to discriminate α and β/γ events
- > >99.9% of α events (with E > 2 MeV) are separated from β/γ ones

Davide Chiesa – University and INFN of Milano-Bicocca

$0\nu\beta\beta$ decay search: results

Final heat spectrum (particle only events + anticoincidence cut)

 $\Rightarrow 3.2 \times 10^{-2} \text{ counts/(keV kg yr)}$

α rejection through particle ID

\Rightarrow 1.3 × 10⁻² counts/(keV kg yr)

> **Delayed-coincidences** to reject 208 Tl β/γ events

 $\Rightarrow 3.5 \times 10^{-3} \text{ counts/(keV kg yr)}$

Phys. Rev. Lett. 123, 032501 (2019)

Background index in the range [2.8 - 3.2] MeV:

 $(3.5^{+1.0}_{-0.9}) \cdot 10^{-3} \text{ cnts/(keV·kg·yr)}$

Lowest background achieved with cryogenic calorimeters.

No evidence of $0\nu\beta\beta$ signal

Best half-life limit on ${}^{82}Se \ 0\nu\beta\beta$ $T_{1/2}^{0\nu} > 3.5 \cdot 10^{24} \text{ yr (90\% C.I.)}$

 $m_{\beta\beta} < 311 - 638 \ meV$

range due to the nuclear matrix element calculations

ICHEP - July 30, 2020

BACKGROUND MODEL

>

10 keV

10 keV

Cou

Eur. Phys. J. C 79, 583 (2019)

window: 20ms Experimental data divided according to multiplicity (M) and particle type $M_{1\beta/\gamma}$ $M_{1\alpha}$ M1 β/γ **M1** M1 a only 10^{2} $\alpha + \beta/\gamma$ 10 Bayesian fit to the experimental data with 1000 1500 2000 500 2500 10000 a linear combination of MC simulated Energy (keV) Energy (keV) 10 keV **spectra** of background sources M $-\Sigma_2$ M2: energy in $\Sigma 2$: total each crystal energy in 10 two crystals tts / (keV kg y) $2\nu\dot{\beta}\dot{\beta}$

10000

10

 10^{-1}

10

10

 10^{-1}

500

Total Energy (keV)

Comprehension of background in $0\nu\beta\beta$ RoI

Energy (keV)

- Measurement of $2\nu\beta\beta$ decay (see next slides)
- Limit on CPT violation in the $\beta\beta$ decay of ⁸²Se
 - → Phys. Rev. D 100, 092002 (2019)

2000

9

Experimenta

Crystals (232Th)

Crystals (²³⁸U)

Muons

3000

Jo Join

Crystals (others) Reflectors Crvostat & Shields

Time-coincidence

Davide Chiesa - University and INFN of Milano-Bicocca

1000

1500

2000

2500

Measurement of $^{82}\text{Se}~2\nu\beta\beta$ decay half life

We obtain the most precise measurement of ⁸²Se $2\nu\beta\beta$ decay half life: $T_{1/2}^{2\nu} = [8.60 \pm 0.03(\text{stat}) {}^{+0.19}_{-0.13}(\text{syst})] \times 10^{19} \text{ yr.}$

Phys. Rev. Lett. 123, 262501 (2019)

	Systematic Source	$\Delta A_{2\nu}$
Fit	Source localization	+0.36 %
	Reduced sources list	-0.10% -1.57%
	Fixed step binning	+0.16%
	Threshold of $\mathcal{M}_{1\beta/\gamma}$	+0.15%
	α identification	-0.01%
	Energy scale	-0.39%
	Prior distributions	+0.04%
	Combined	$^{+0.4}_{-1.6}\%$
	Detector efficiency	$\pm 0.5\%$
	⁸² Se atoms	$\pm 1.0\%$
Model	2 uetaeta	±1.0%
Total		$^{+1.6}_{-2.2}\%$

10

EVIDENCE OF SINGLE-STATE DOMINANCE

- > A precise measurement of the $2\nu\beta\beta$ spectral shape provides a useful benchmark for nuclear model calculations
- > $2\nu\beta\beta$ is modeled as a sequence of two virtual β decays going through one (SSD) or more (HSD) states of the (A,Z+1) intermediate nucleus

Phys. Rev. Lett. 123, 262501 (2019)

Proton Neutron Electron

 $\frac{\text{SSD} \rightarrow \text{single-state dominated}}{\text{HSD} \rightarrow \text{higher-state dominated}}$

82 35Br

We have a strong evidence that the $2\nu\beta\beta$ decay of ⁸²Se is **Single–State Dominated (SSD)**

CUPID-0 Phase II

- Muons are main residual background
- No reflective foil
- New cleaner Cu shield

- \rightarrow Installation of μ -veto
 - Measurement of M2 α events from crystal surfaces
 - Thermalization and additional shielding

ICHEP - July 30, 2020

Davide Chiesa – University and INFN of Milano-Bicocca

SUMMARY AND FUTURE PERSPECTIVES

- > CUPID-0 is the first $\beta\beta$ -decay experiment based on **scintillating** cryogenic detectors (**highly enriched**)
- > It features an **excellent alpha-rejection**, and the **lowest background** among cryogenic calorimeters
- > Acquired data allowed to establish the **best half-life limit** on 82 Se $0\nu\beta\beta$ decay:

 $T_{1/2}^{0\nu} > 3.5 \cdot 10^{24} \text{ yr} (90\% \text{ C.I.})$

and the most precise measurement of ⁸²Se $2\nu\beta\beta$ decay half-life:

 $T_{1/2}^{2\nu} = [8.60 \pm 0.03(\text{stat})^{+0.19}_{-0.13}(\text{syst})] \times 10^{19} \text{ yr}.$

> CUPID-0 Phase II \rightarrow better understanding of background sources (data release within 2020)

CUORE, CUPID-0, and CUPID-Mo provide the most stringent limits on $0\nu\beta\beta$, and the most precise measurements of $2\nu\beta\beta$ on three different isotopes.

Solid foundations for the CUPID experiment!