Final results of the CUPID-0 Phase I experiment

Chiara Brofferio (UniMiB and INFN Milano Bicocca) on behalf of the CUPID-0 collaboration

ICNFP 2019 Kolymbari, 21-29 August 2019

Experimental search for $0\nu\beta\beta$

Experimental search for $0\nu\beta\beta$: Motivations

Next generation experiments will explore the whole **Inverted Hierarchy** and the most favored region of the **Normal one**.

Two are the fundamental ingredients to reach the required sensitivity: Background reduction (<10-4 counts/keV kg y)

ββ emitter increase

Scintillating Thermal Detectors

A Thermal Detector is a highly sensitive **calorimeter** operated @ cryogenic temperature (~10 mK).

Energy depositions are measured as temperature variations of the absorber.

TDs features:

- ▶ high energy resolution O(1/1000)
- ▶ wide choice of compound TeO₂, Li₂MoO₄, ZnSe
- high detection efficiency (source = detector)
- scalable to large masses

If the absorber is also an efficient scintillator the energy is converted into heat + light

CUPID-0 strategy

Since bolometers are fully active detectors, they show a large background component due to energy degraded α particles

In CUORE-0 the degraded α background was a minor contribution at ¹³⁰Te Q $_{\beta\beta}$ (2527.5 keV)

CUPID-0 use a higher $Q_{\beta\beta}$ isotope and rejects α signals using the scintillation LIGHT

In CUORE it dominates over the 2615 keV (²⁰⁸TI) multi-Compton: it's the major component in the ROI

Excellent discrimination can be obtained based on the shape of the light pulse

CUPID-0 (CUORE Upgrade with Particle ID prototype)

CUPID-0 is the first array of scintillating bolometers

for the investigation of ⁸²Se $0\nu\beta\beta$

⁸²Se Q-value 2998 keV (above ²⁰⁸Tl line)

- 95% enriched Zn⁸²Se bolometers
- 26 bolometers (24 enr + 2 nat) arranged in 5 towers
 - 10.5 kg of ZnSe
 - 5.17 kg of ⁸²Se —> 3.8x10²⁵ ββ nuclei
- LD: Ge slab operated as bolometer. One face coated with 60 nm SiO₂ —> Light collection enhancement ~50%
- Simplest modular detector -> scale up
 - Copper structure (ElectroToughPitch)
 - PTFE clamps
 - Reflecting foil (VIKUITI 3M)

CUPID-0 installation

Detector installed in the former CUORE-0 cryostat with major upgrades:

- Rn-abatement system next to the cryostat
 - Reduction and Control of ²¹⁴Bi
- Double stage pendulum for low vibrational noise
 - LD performance
- Cryostat wiring: can host up to 120 detectors

☞ Eur. Phys. J. C (2018) 78:428 (Detector Paper)

CUPID-0 Phase-I total live-time

CUPID-0 Phase I full spectrum - 5.29 ⁸²Se kg y exposure

⁶⁵Zn: Cosmogenic activation

- Rejection of "non-particlelike" events through pulse shape on thermal pulses. Reduces exposure by 7%
- Anti-coincidence between ZnSe crystals
- α rejection by light shape
- Delayed coincidences veto

Eur. Phys. J. C (2018) 78:734 (Analysis technique)

β/γ background: ²³²Th internal and surface contaminations

Rejection of the ²⁰⁸TI induced background (internal crystal contamination)

Surface crystal contamination -> we veto after all α interactions with energy between 2 and 6.5 MeV

β/γ background: ²³²Th internal and surface contaminations

Rejection of the ²⁰⁸TI induced background (internal crystal contamination)

Surface crystal contamination -> we veto after all α interactions with energy between 2 and 6.5 MeV

CUPID-0 Phase I limit with 9.95 (Zn⁸²Se) kg y exposure

CUPID-0 Phase I limit with 9.95 (Zn⁸²Se) kg y exposure

Best half-life limit on ⁸²Se: T⁰ > 3.5 * 10²⁴ yr (90%C.I.)

Corresponding to a neutrino mass limit

 $m_{\beta\beta} < 311 - 638 \ meV^*$

* depending on the Nuclear Matrix element adopted

Other analyses: CUPID-0 $0\nu\beta\beta$ into the excited states of ⁸²Kr

Alternative models would benefit from the study of the decay into exc. states

Example of Signature:

2 crystals involved: $\beta\beta + \gamma_2 = 2221,5$ keV $\gamma_1 = 776,5$ keV

CUPID- 0 meas. of $0\nu\beta\beta$ on exc. states

🖙 Eur. Phys. J. C (2018) 78:888

 $T_{1/2}^{\beta\beta}(^{82}\text{Se} \rightarrow ^{82}\text{Kr}_{0_{1}^{+}}) > 8.11 \times 10^{22} \text{ y}$ $T_{1/2}^{\beta\beta}(^{82}\text{Se} \rightarrow ^{82}\text{Kr}_{2_{1}^{+}}) > 1.11 \times 10^{23} \text{ y}$ $T_{1/2}^{\beta\beta}(^{82}\text{Se} \rightarrow ^{82}\text{Kr}_{2_{2}^{+}}) > 8.40 \times 10^{22} \text{ y}$

Soon also $2\nu\beta\beta$ on exited states from CUPID-0

Other analyses: CUPID-0 $2\nu\beta\beta$

Evaluation of the $2\nu\beta\beta$ half-life from the analysis of the different bkg sources

☞ Eur.Phys.J. C 79 (2019) 7:583 (Background Model)

Other analyses: CUPID-0 $2\nu\beta\beta$

Evidence of Single State Dominance through $2\nu\beta\beta$ energy spectrum

Spectra from nucleartheory.yale.edu and Jenni Kotila

SSD: $\chi^2/ndf = 253/233 = 1.1$ (p-value =0.18) HSD: $\chi^2/ndf = 360/233 = 1.55$ (p-value <0.00001)

Other analyses: CUPID-0 Background Model

Where does the residual background come from?

Make use of information extracted from 4 different energy spectra

+ higher multiplicity spectra to normalise cosmic rays

Bkg components in the Region Of Interest ($\left[2800-3200\right]\,\text{keV}$)

After all cuts:

Component	${ m ROI}_{bkg}$ rate $(10^{-4}{ m counts}/({ m keV~kg~yr}))$	Source	${ m ROI}_{bkg}$ rate (10 ⁻⁴ counts/(keV kg yr))
Crystals	$11.7 \pm 0.6 \ ^{+1.6}_{-0.8}$	²³² Th– bulk ²³² Th–surf ²³⁸ U–surf	$\begin{array}{c} 3.4 \pm 0.6 \pm 0.1 \\ 3.4 \pm 0.5 \begin{array}{c} ^{+1.0} \\ ^{-0.7} \\ 4.9 \pm 0.3 \begin{array}{c} ^{+1.3} \\ ^{-0.3} \end{array} \end{array}$
Reflectors & Holder	$2.1\pm0.3~^{+2.2}_{-1.0}$	²³² Th ²³⁸ U	$< 3.3 \ 1.8 \pm 0.3 \ ^{+1.4}_{-0.9}$
Cryostat & Shields	$5.9 \pm 1.3 \ ^{+7.2}_{-2.9}$	²³² Th ²³⁸ U	$3.5 \pm 1.3 \ ^{+7.4}_{-3.3} \ 2.4 \pm 0.4 \ ^{+4.1}_{-0.7}$
Subtotal	$19.8 \pm 1.4 \ ^{+6.6}_{-2.7}$		
Muons	$15.3 \pm 1.3 \pm 2.5$		
2 uetaeta	$6.0\pm0.3~(<3\times10^{-6}~{\rm counts}/({\rm keV~kg~yr})$ in [2.95–3.05] MeV range)		
Total	$41 \pm 2 {}^{+9}_{-4}$		
Experimental	$35 \stackrel{+10}{-9}$		

Essential insights for the next-generation detector design CUPID-0 Phase II will validate the current model

CUPID-0 Phase II

January 2019: stop data taking for a major detector upgrade:

- Remove the reflective foils
- Install a new clean copper shield
- Introduce a (partial) muon veto

Physics data collection started on June

What can we learn with detector upgrades:

- Check the bulk/surface ratio of the external radio-contaminations
- Improve the detector stability and understand ²⁰⁸TI rates
- Study the muon contribution via MC/data comparison or muon tagging

CUPID-0: first large array of enriched scintillating bolometers for the study of 82 Se $0\nu\beta\beta$

Proved the potential of PID for background rejection

Despite the small exposure, best 90% C.I. limit on the $0\nu\beta\beta$ of ⁸²Se

 $\tau_{1/2} > 3.5 \cdot 10^{24}$ yr in 5.29 kg yr of ⁸²Se (Nemo results: $\tau_{1/2} > 3.6 \cdot 10^{23}$ yr in 3.5 kg yr of ⁸²Se)

Several important hints for nuclear physicists: $0\nu\beta\beta$ on exc. st., SSD- $2\nu\beta\beta$, $\mathcal{M}^{eff}_{2\nu}$...

CUORE, CUPID-0, and CUPID-Mo are laying the foundation for the next generation CUPID experiment (pre-CDR <u>arXiv:1907.09376</u>)