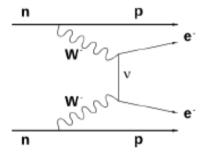
CUPID-0: a double-readout cryogenic detector for DBD

Chiara Brofferio (UniMiB and INFN Milano Bicocca) on behalf of the CUPID-0 collaboration


Experimental search for $0\nu\beta\beta$

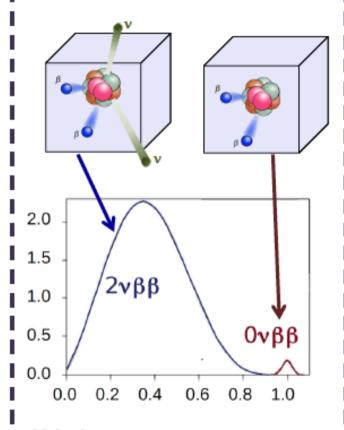
WHAT WE ARE LOOKING FOR

$$2νββ: (A,Z) → (A,Z+2) + 2e^- + 2\bar{ν}_e$$

• allowed in the SM and already observed with $T_{1/2} > 10^{18}$ y

$$\mathbf{0}$$
νββ: $(A,Z) \rightarrow (A,Z+2)+2e^-$

- · not allowed in the SM
- expected with T_{1/2} > 10²⁵ y


If observed:

- · lepton number violation
- neutrinos are Majorana particles
- measures effective electron neutrino mass

$$m_{\beta\beta} \equiv |e^{i\alpha_1}|U_{ei}^2|m_1 + e^{i\alpha_2}|U_{e2}^2|m_2 + |U_{e3}^2|m_3|$$

EXPERIMENTAL SIGNATURE

Approach: SOURCE = DETECTOR

Main signature:

Peak at Q-value over 2vββ tail enlarged only by detector resolution

EXPERIMENTAL SENSITIVITY

Lifetime corresponding to the minimum detectable number of events over background at a given C.L.:

$$S^{0\nu} \propto \epsilon i.a. \sqrt{\frac{MT}{b\Delta E}}$$
 $b \neq 0$
 $S^{0\nu} \propto \epsilon i.a. MT$ $b = 0$

M: Total active mass in kg

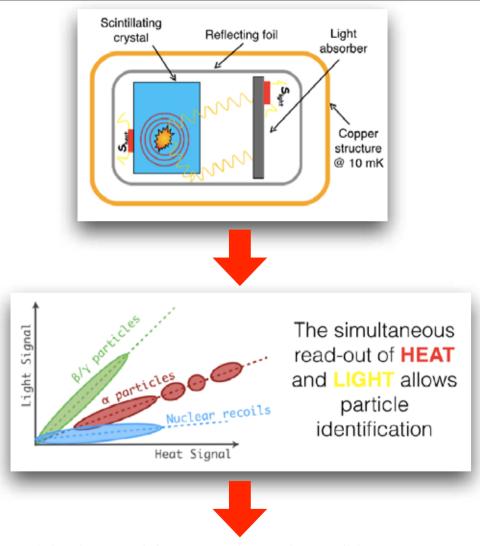
←: Detector efficiency

i.a.: Isotopic abundance

b: Background in c/keV/kg/y

ΔE: Detector resolution @ ROI in keV

T: Exposure time in y


Scintillating Thermal Detectors (STDs)

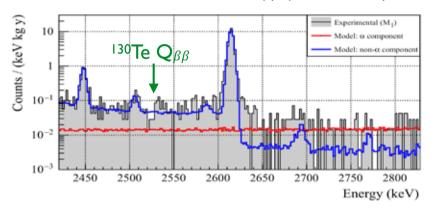
A bolometer is a highly sensitive calorimeter operated @ cryogenic temperature (~10 mK).

Energy depositions are measured as **temperature** variations of the absorber.

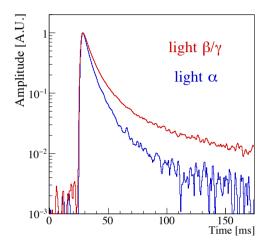
- STDs features:
 - ▶ high energy resolution O(1/1000)
 - ▶ wide choice of compound TeO₂, ZnMoO₄, ZnSe
 - high detection efficiency (source = detector)
 - scalable to large masses
 - particle ID

If the absorber is also an **efficient scintillator** the energy is converted into **heat** + **light**

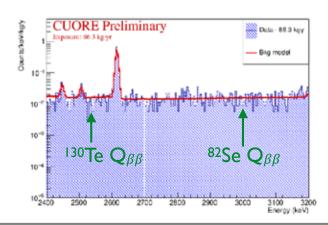
A background-free experiment is possible:

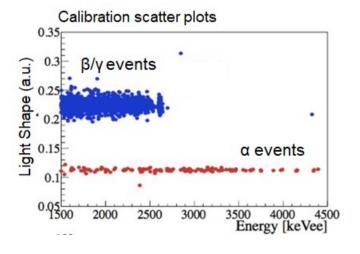

α-background: identification and rejection

 β -background: $\beta\beta$ isotope with large Q-value


CUPID-0 (CUORE Upgrade with Particle ID prototype)

Since bolometers are fully active detectors, they show a large background component due to energy degraded α particles

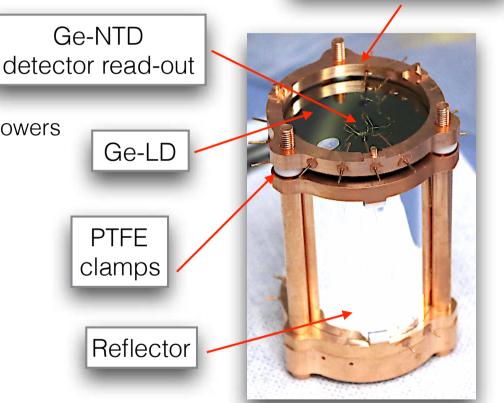

In CUORE-0 the degraded α background was a minor contribution at ¹³⁰Te Q_{ββ} (2527.5 keV)


CUPID-0 use a higher $Q_{\beta\beta}$ isotope and rejects α signals using the scintillation LIGHT

In CUORE it dominates over the 2615 keV (²⁰⁸TI) multi-Compton: it's the major component in the ROI

Excellent discrimination can be obtained based on the shape of the light pulse

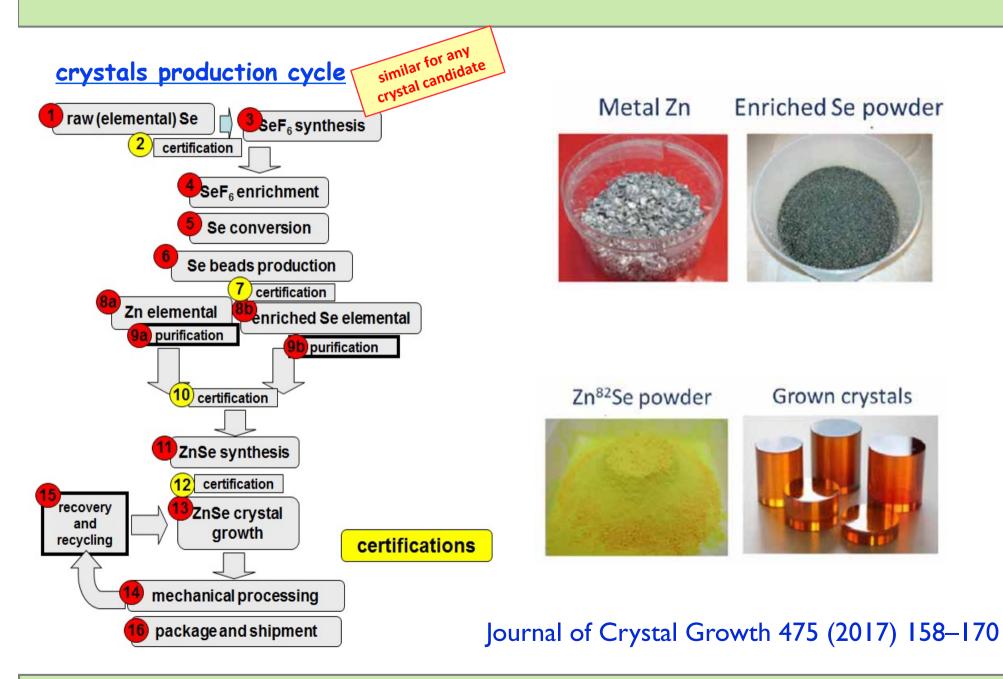
CUPID-0 Detector


CUPID-0 is the first array of scintillating bolometers for the investigation of 82Se 0vββ

82Se Q-value 2998 keV (above ²⁰⁸TI line)

95% enriched Zn⁸²Se bolometers

26 bolometers (24 enr + 2 nat) arranged in 5 towers


- 10.5 kg of ZnSe
- 5.17 kg of 82Se —> 3.8x1025 ββ nuclei
- LD: Ge slab operated as bolometer. One face coated with 60 nm SiO₂ —> Light collection enhancement ~50%
- Simplest modular detector -> scale up
 - Copper structure (ElectroToughPitch)
 - PTFE clamps
 - Reflecting foil (VIKUITI 3M)

Copper structure

Main goal:
Minimize mass of passive
materials next to the detector

Zn82Se crystals production

Zn82Se crystals production

enrichment: 82Se from 8.82% to 96.30% (URENCO, Almelo, Holland)

Zn82Se synthesis and crystal growth:

(ISMA Kharkiv Ukraine with strong INFN contribution)

final processing (cutting and polishing):

@ LNGS, INFN Italy

production yields:

synthesis: 98.35%

(99.55% at S-I, 99.40% at VTT and 99.40% at HTT)

crystal growth*: 95%

cutting*: 96,72%

shaping and polishing*: 99%

*including recovered material for recycling

radio-purity measured during crystal production

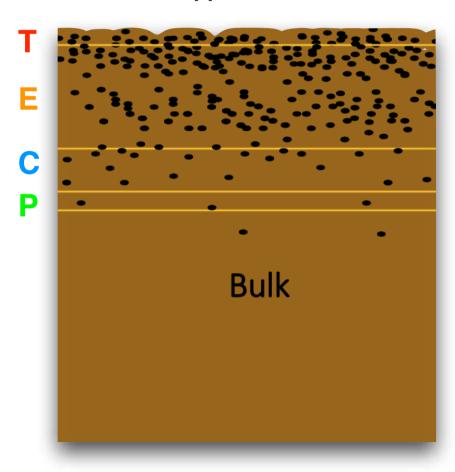
HPGe γ-spectroscopy bo

Zn⁸²Se bolometric test (Hall C)

Nuclides	Metal 82Se [µBq/kg]	Metal Zn [μBq/kg]	Crystal [µBq/kg]
232 Th			7±2
228 Th	<110	<95	26±2
224 R a	<61	<36	27±3
238 U			10±2
²²⁶ Ra	<110	<66	33±4
210 P O			150±8

J.W. Beeman et al., Eur. Phys. J. C76 (2016) 7, 364

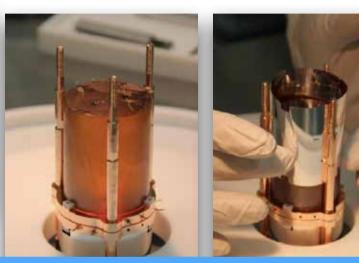
confirmed by CUPID-0 data

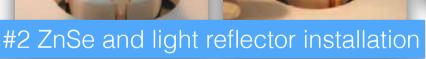

O. Azzolini et al. , Eur. Phys. J. C. (2018) 78:428

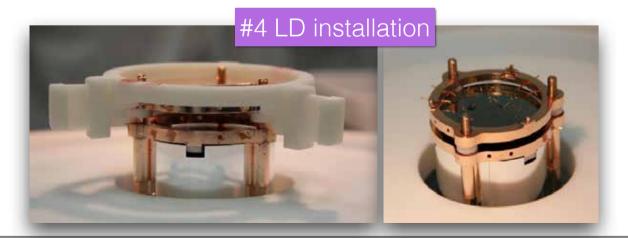
CUPID-0 Copper Cleaning

Copper cleaning procedure for mitigating surface contaminations

- Pre-cleaning: lubricant removal from machining
- Tumbling: abrasion + smoothening
 - removal 1.2 um (0.06 um/h)
- Electropolishing: smoothening
 + contaminants dissolution
 - removal 100 um (12 um/h)
- Chemical etching: SUBU+passivation
 - removal 10 um (120 um/h)
- Plasma etching: desorption
 - 0.2 um (lum/h)


Copper surface

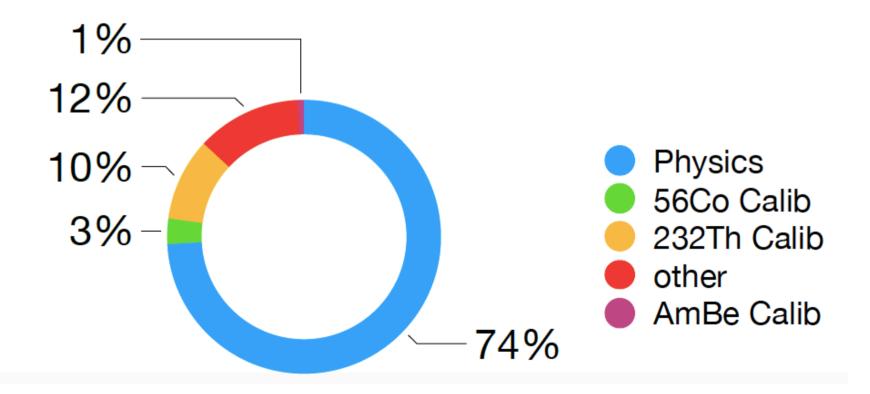



CUPID-0 assembly

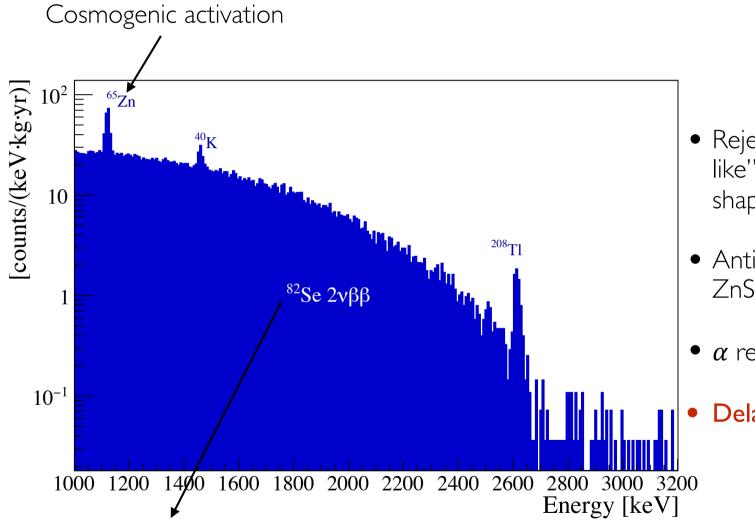
Detector assembly performed in ~2 weeks inside a low-Rn underground clean room at LNGS

CUPID-0 installation

Detector installed in the former CUORE-0 cryostat after some improvements:


- Refurbishment of the Rn-abatement system next to the cryostat (to reduce in particular ²¹⁴Bi)
- A second stage pendulum to reduce vibrational noise (fundamental for the LD performance)

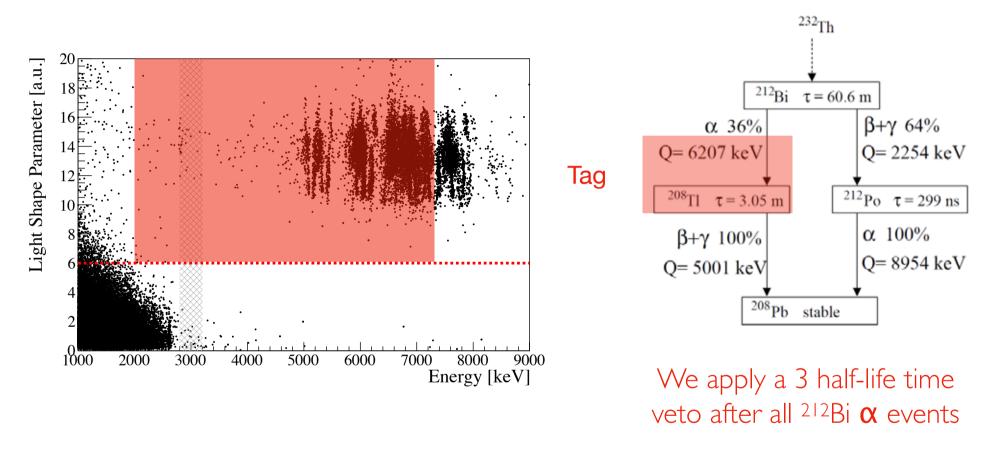
New Cryostat wiring: can host up to 120 det.


In June 2017 the commissioning was finished and the data taking started

CUPID-0 exposure

- Exposure for 0vββ: 9.95 kg x yr (3.88x10²⁵ emitters x yr)
- Official data-taking, from 01/06/2017 to 14/12/2018: about 560 d.

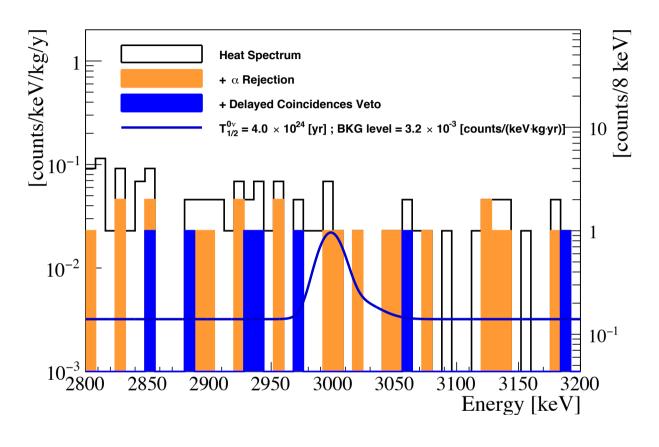
CUPID-0 full spectrum - 5.46 (Zn82Se) kg y exposure



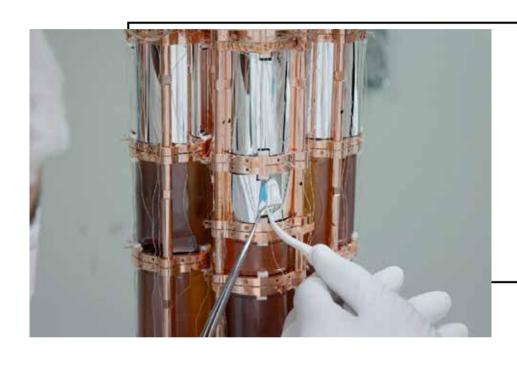
- Rejection of "non-particle-like" events through pulse shape on thermal pulses.
- Anti-coincidence between ZnSe crystals
- ullet lpha rejection by light shape
- Delayed coincidences veto

 $T_{1/2} = (9.2 \pm 0.7) \cdot 10^{19} yr$

A. S. Barabash, https://doi.org/10.1016/j.nuclphysa.2015.01.001


β/γ background: ²³²Th internal and surface contaminations

Rejection of the ²⁰⁸Tl induced background (internal crystal contamination)


Surface crystal contamination -> we veto after all α interactions with energy between 2 and 6.5 MeV

CUPID-0 limit - 5.46 (Zn82Se) kg y exposure

Exposure	5.46 (Zn ⁸² Se) kg y	
Background	3.2 +1.3 -1.1	counts/keV/ton/y (Zn ⁸² Se)
Lower limit, half-life:	$T_{1/2}(0v) \ge$	$4.0 \times 10^{24} \text{ y} (90\% \text{ C.L.})$
Eff. (trigger + data sel. + $\beta\beta$ containment)	75 ± 2 %	

CUPID-0: What Next?

January 2019: stop data taking for a major detector upgrade:

- Remove the reflective foils
- Install a new clean copper shield
- Introduce a (partial) muon veto

CUPID-0: What Next?

What can we learn with detector upgrades:

- Check the bulk/surface ratio of the external radio-contaminations
- Improve the detector stability and understand the origin of ²⁰⁸Tl contamination
- Study the muon contribution via MC/data comparison or muon tagging

• ...

Conclusions

CUPID-0: first large array of enriched scintillating bolometers for the study of 82 Se $0\nu\beta\beta$

- Proved the potential of PID for background rejection
- Will continue with the Phase-II program

Despite the small exposure, best 90% C.I. limit on the $0\nu\beta\beta$ of 82 Se

$$\tau_{1/2} > 4.0 \cdot 10^{24} \, \text{yr in } 2.90 \, \text{kg yr of} \, ^{82}\text{Se}$$

(Nemo results: $T_{1/2} > 3.6 \cdot 10^{23}$ yr in 3.5 kg yr of ⁸²Se)

New data release soon, together with other studies ($2\nu\beta\beta$, CPTV, Bkg model...)