

Results on double beta decay of ⁸²Se with CUPID-0 Phase I

SOA

Lorenzo Pagnanini on behalf of the CUPID-0 collaboration

MEDEX 19, Prague - May 28th, 2019

Scintillating bolometers

- **Grown from different ßß** emitters
- Excellent energy resolution (<1%)</p>
- Modular design allows for large scalability
- Q-value > 2.6 MeV
- $\blacksquare \quad \mathbf{L}\mathbf{Y}_{\alpha} \neq \mathbf{L}\mathbf{Y}_{\beta/\gamma} \rightarrow \mathbf{Particle ID}$

Scintillating crystals operated at **~10 mK** Particle interaction → T increasing

Ονββ Signal: monochromatic peak at the Q-value of the reaction.

L. Pagnanini

MEDEX 19

CUPID-0 detector

- a. Single module
- b. Top view
- c. CUPID-0 array
- d. Cryostat

- 24 95%-enriched Zn⁸²Se crystals + 2 natural ones
- **31 Ge light detectors**

Reflective foil VikuitiTM to increase the light collection

- Total Mass: 10.5 kg (ZnSe) 5.17 kg (⁸²Se)
- $\mathbf{Q}_{\beta\beta} = (\mathbf{2997.9} \pm \mathbf{0.3}) \mathbf{keV}$

Hosted in the CUORE-0 Cryostat (LNGS, Italy)

See Eur. Phys. J. C (2018) 78:428 (Detector Paper)

CUPID-0 livetime

Performances and results

- Final Exposure (Physics Runs): 9.95 kg × y (22 Zn⁸²Se)
- ⁸²Se atoms: (3.41 ± 0.03) 10²⁵
- **Resolution at Q_{\beta\beta}: (20.05 ± 0.34) keV**
- Background: $3.5^{-0.9}_{+1.0} \times 10^{-3}$ counts/(keV × kg × y)
- $T_{1/2} (0_{\nu}\beta\beta^{82}Se) > 3.5 \times 10^{24} \text{ y (90\% C.I. Limit)}$

5.0 × 10²⁴ y (Median Sensitivity)

Ven Release

L. Pagnanini

Background model overview

In order to measure the **2vßß activity** and **identify the background sources**, we perform a **Bayesian fit** to the experimental data with a linear combination of simulated spectra.

33 BACKGROUND SOURCES

- ZnSe crystals **bulk / surf_O(10µm) / surf_O(10nm)** contaminations
- Reflective foil **surf_O(10nm)**←
- Cryostat (bulk only):
 - Internal shields (Holder + 600 mK + 50 mK)
 - Roman Lead
 - External shields (IVC + OVC)
 - External Lead
- Muons (normalized to high multiplicity events M>3)

real arXiv:1904.10397v1 (Background Model)

L. Pagnanini

Thickness of VM foils: 70 µm

Range of a particles $\sim 50 \,\mu m$

Background Components (β/γ)

2vββ is the dominant contribution! Caveat: Delayed coincidence cut is not applied in this plot.

arXiv:1904.10397v1(Background Model)

L. Pagnanini

Region Of Interest

Background rate in the ROI (2.8 - 3.2 MeV) after the **delayed coincidences** cut.

Source	Rate $(counts/(keV \cdot kg \cdot y))$	Systematics
2 uetaeta	$(6.0 \pm 0.3) \times 10^{-4}$	
Crystals bulk – ²³² Th	$(3.4 \pm 0.6) \times 10^{-4}$	
$Crystals \ surf - {}^{232}Th$	$(3.4 \pm 0.5) \times 10^{-4}$	$[2.2 - 4.7] \times 10^{-4}$
$Crystals \ surf - {}^{238}U$	$(5.3 \pm 0.4) \times 10^{-4}$	$[5-7] \times 10^{-4}$
$Reflectors - {}^{232}Th$	$< 7 \times 10^{-5}$	
$Reflectors - {}^{238}U$	$(1.8 \pm 0.3) \times 10^{-4}$	$[1-3] \times 10^{-4}$
$Cryostat \& Shields - {}^{232}Th$	$(4.0 \pm 1.3) \times 10^{-4}$	$[0.7 - 11] \times 10^{-4}$
Cryostat & Shields $-^{238}$ U	$(2.2 \pm 0.4) \times 10^{-4}$	$[1.5 - 2.6] \times 10^{-4}$
Muons	$(1.53 \pm 0.13) \times 10^{-3}$	$[1.3 - 1.8] \times 10^{-3}$
Total	$(4.2 \pm 0.2) \times 10^{-3}$	$[4.1 - 4.8] \times 10^{-3}$

We can improve understanding of our background thanks to CUPID-0 Phase II

L. Pagnanini

Detector upgrade

• μ are the main residual background – Installation of μ -veto

New clear Cu Shield – Thermalization – Additional shielding

No reflective foil

 $- \begin{array}{c} {\rm Sensitivity \ to} \\ {\rm M2} \ \alpha \ {\rm events} \end{array}$

CUPID-0 PhaseII data-taking is going to start!

Double β-decay into the excited states of ⁸²**Kr** HPGe measurement with 2.5 kg of enriched ⁸²Se

 $(2\nu\beta\beta + 0\nu\beta\beta)$

C Eur. Phys. J. C (2015) 75:591

$$T_{1/2}^{\beta\beta}(^{82}\text{Se} \rightarrow ^{82}\text{Kr}_{0_{1}^{+}}) > 3.4 \times 10^{22} \text{ y}$$
$$T_{1/2}^{\beta\beta}(^{82}\text{Se} \rightarrow ^{82}\text{Kr}_{2_{1}^{+}}) > 1.3 \times 10^{22} \text{ y}$$
$$T_{1/2}^{\beta\beta}(^{82}\text{Se} \rightarrow ^{82}\text{Kr}_{2_{2}^{+}}) > 1.0 \times 10^{22} \text{ y}$$

CUPID-0 measurement of 0vββ

C Eur. Phys. J. C (2018) 78:888

$$\begin{split} T_{1/2}^{\beta\beta}(^{82}\text{Se} &\to ^{82}\text{Kr}_{0_{1}^{+}}) > 8.11 \times 10^{22} \text{ y} \\ T_{1/2}^{\beta\beta}(^{82}\text{Se} &\to ^{82}\text{Kr}_{2_{1}^{+}}) > 1.11 \times 10^{23} \text{ y} \\ T_{1/2}^{\beta\beta}(^{82}\text{Se} &\to ^{82}\text{Kr}_{2_{2}^{+}}) > 8.40 \times 10^{22} \text{ y} \end{split}$$

Soon also 2vββ on exited states from CUPID-0

Conclusions

CUPID-0 is the first experiment for ββ-decay based on highly enriched scintillating calorimeter

- An **excellent Alpha rejection** has been demonstrated
- **Lower background** cryogenic calorimeters
- **Best limit on ^{82}Se Ov** $\beta\beta$
- Best measurement of ⁸²Se $2\nu\beta\beta$

Single State Dominance proved

CUPID-0, together with CUORE and CUPID-Mo, is laying the foundation for the next generation CUPID experiment.