2025/11/12 17:49 1/5 Sicurezza in Laboratorio

Sicurezza in Laboratorio

Università di Milano-Bicocca: Sicurezza

Norme di comportamento generali

- non rimanere mai da soli in laboratorio 1)2)
- leggere attentamente i manuali di istruzione degli strumenti utilizzati
- prima di lasciare il laboratorio verificare sempre che tutti gli strumenti siano in sicurezza (checklist)
- utilizzare elmetti, guanti e occhiali protettivi quando necessario
- documentare tutte le operazioni eseguite sugli appositi log-book
- delimitare le zone a rischio con l'apposita catenella bianco-rossa o con il nastro
- qualora sia necessario accedere al laboratorio fuori dall'orario di apertura del dipartimento è obbligatorio essere in 2 e comunicarlo preventivamente al Preposto
- non manomettere o rimuovere i dispositivi di sicurezza
- lasciare libero l'accesso ai portelloni neri che costituiscono le uscite di sicurezza del laboratorio (non ingombrare il corridoio, non ostruire le porte, ...)
- lasciare libero l'accesso alle porte dei laboratori
- non rimuovere le ringhiere del soppalco
- utilizzare scarpe adatte (per esempio chiuse e senza tacco) per evitare incidenti sulle scale e come protezione da urti e piccoli sversamenti accidentali di liquidi criogenici

Persone di riferimento

- Preposto per l'attività di ricerca e didattica: Marco Faverzani (tel. 2225)
- In mancanza del preposto, delle attività in laboratorio risponde la persona più anziana (per esperienza): normalmente Elena Ferri (tel. 2354)
- Responsabile Servizio Prevenzione e Protezione RSPP (Università di Milano-Bicocca): Francesca Peltrera (tel. 6109) (email servizio.prevenzione@unimib.it]
- Responsabile Servizio Prevenzione e Protezione RSPP (INFN Sezione di Milano-Bicocca): Giuseppe Bestiani (tel. 2330)
- Esperto Qualificato del Dipartimento di Fisica: Stefano Giunti (esterno), per necessità relative alla radioprotezione rivolgersi a Marco Faverzani
- Responsabile liquidi criogenici: Giancarlo Ceruti (tel. 0266173360)
- Personale abilitato all'uso dei mezzi di sollevamento: Giancarlo Ceruti, Angelo Nucciotti

Emergenze

- incidente/infortunio: portineria (2099) e 112
- incendio esteso: portineria (2099) e 112 (assicurarsi che sia scattato l'allarme incendio)
- SEMPRE PER QUALSIASI EMERGENZA: portineria (2099)
- Pagina emergenze di Ateneo
 - Guida pratica in caso di emergenza
- Numero verde per Call Center per la richiesta di interventi manutentivi 800.610.669 (solo

Last update: 2025/03/07 10:06

<u>Codice Rosso!</u> ovvero per interventi da eseguirsi immediatamente perché la sicurezza delle persone o delle cose è a rischio.³⁾)-pagina Unimib linee guida numero verde per richiedere interventi manutentivi rivolgersi a Marco Faverzani o Elena Ferri

- Piano emergenza ed evacuazione di Ateneo
- Elenco addetti all'emergenza e primo soccorso DA AGGIORNARE
- Procedure di emergenza U2 per operatori esterni
- Piano di evacuazione -3

In caso di allarme carenza ossigeno

- abbandonare immediatamente il laboratorio
- segnalare immediatamente l'allarme al preposto
- non disinserire l'allarme
- in ogni caso non rientrare in laboratorio prima di aver verificato dal quadro all'esterno del laboratorio che il livello dell'ossigeno sia rientrato nella normalità (>20%) e non prima che sia spento l'allarme visivo posto all'esterno del laboratorio
- non manomettere i sistemi di sicurezza:
 - o non bypassare l'elettrovalvola che intercetta la linea dell'azoto gassoso
 - non danneggiare le capsule dei sensori dell'ossigeno esponendole a vapori di solventi o flussi di gas
- segnalare immediatamente al preposto qualsiasi anomalia dei sensori dell'ossigeno

In caso di black-out

- in caso di black-out, il sistema UPS (Uninterruptible Power Supply), grazie all'autonomia data dalle sue batterie, garantirà il funzionamento dei criostati, dei sensori per l'ossigeno, di alcune luci e di quant'altro è stato collegato ai quadri elettrici con targhetta rossa fino ad esaurimento delle batterie (il tempo effettivo dipende dal carico totale).
- i computer sotto UPS faranno shutdown automaticamente dopo pochi minuti.
- in caso di black-out il sistema di condizionamento e ricambio di aria 4) si ferma subito
- terminata l'autonomia dell'UPS il sistema di rilevazione carenza ossigeno non è più attivo
- in caso di black-out prolungato, se necessario, sfruttare il periodo di autonomia dato dall'UPS per mettere in sicurezza i sistemi criogenici e lasciare il laboratorio, altrimenti abbandonare subito il laboratorio
- in ogni caso, terminata l'autonomia dell'UPS, abbandonare immediatamente il laboratorio

Normativa

- Sicurezza sui luoghi di lavoro 5)
- 1. D.Lgs 626 del 1994
- 2. D.M. 363 del 1998
- 3. Regolamento per l'attuazione del D.M. 363 del 1998 in Bicocca
 - 4. D.Lqs 230 del 1995
 - 5. D.Lgs 81 del 2008 (Sicurezza sul lavoro)
 - 6. D. Lgs. 101 del 2020 (Radioprotezione)

2025/11/12 17:49 3/5 Sicurezza in Laboratorio

Liquidi Criogenici

- Liquidi utilizzati in laboratorio
 - ∘ Elio liquido (T=4K)
 - Azoto liquido (T=77K)
- rischio ustione da congelamento
 - o utilizzare sempre guanti per criogenia
 - indossare occhiali protettivi
 - non toccare parti fredde a mani nude (soprattutto i metalli)
- rischio asfissia 6)
 - fare attenzione ai sensori di ossigeno: in caso di allarme abbandonare immediatamente il laboratorio e segnalare il rischio
 - o mantenere i contenitori di elio liquido collegati alla linea di recupero in rame
- rischio esplosione ⁷⁾
 - verificare l'apertura delle valvole di sicurezza
 - verificare la chiusura delle valvole di spillaggio
 - o prima di aprire una valvola verificare sempre la differenza di pressione
- mantenere tutti i contenitori verticali
- non utilizzare i dewar per versare il liquido
- chiudere sempre i contenitori con gli appositi coperchi
- attenzione alla formazione di tappi di ghiaccio (possibile alta pressione)
- nel dubbio chiamare il responsabile
 - Capitolo sulla sicurezza estratto da "Handbook of Cryogenic Engineering", J. Weisand
 - Inventario dei liquidi criogenici e valutazione dell'impatto dovuto alla loro evaporazione
 - Scheda sicurezza Azoto Liquido
 - Scheda sicurezza Elio Liquido

Gas pressurizzati

- gas distribuiti nel laboratorio: aria compressa, azoto e elio
- pressioni elevate possono aversi anche nei circuiti dei refrigeratori a diluizione
- chiudere sempre i due rubinetti dei punti presa
- prima di aprire i rubinetti mettere i riduttori al minimo
- mantenere i riduttori sotto 500 mbar
- utilizzare tubi adeguati per prelevare i gas e controllarne sempre lo stato prima dell'uso
- non manomettere le valvole di sicurezza
- prima di aprire una valvola verificare sempre la differenza di pressione

Sorgenti Radioattive

- Gli studenti non sono autorizzati a maneggiare le sorgenti radioattive
- Non toccare a mani nude
- Non toccare la parte attiva
- Tenere a distanza dal corpo e dalle mani
- · Proteggere gli occhi
- · Limitare il tempo di utilizzo
- Maneggiare con pinza

- Segnalare sempre in maniera ben visibile le sorgenti (indicare tipo e attività della sorgente)
- Riporre le sorgenti non utilizzate dietro una schermatura di piombo
- Documentarsi prima dell'uso
- Sorgenti utilizzate nel laboratorio:
- 1. 60Co
- 2. 55Fe
- 3. 22Na
- 4. 109Cd
- 5. 57Co
- 6. 241Am

Mezzi di sollevamento

- carro-ponte, paranco elettrico, carrello elevatore e trans-pallet possono essere utilizzati solo con il supporto del personale abilitato
- in presenza di carichi sospesi utilizzare gli elmetti protettivi

Impianto elettrico

- è assolutamente vietato manomettere gli impianti elettrici
- l'accesso ai quadri elettrici è consentito solo al personale della manutenzione
- è assolutamente vietato manomettere le connessioni elettriche della strumentazione
- non lasciare aperti i computer e i quadri di controllo delle apparecchiature
- l'allacciamento elettrico delle apparecchiature elettriche deve essere effettuato solo da elettricisti
- non abusare delle prese multiple, verificare sempre il rating massimo
- non connettere prese multiple (ciabatte) in cascata
- non lasciare per terra le prese multiple, specie in prossimità di dove si usano liquidi criogenici

Procedure

- Nuove procedure di sicurezza laboratori di ricerca di UNIMIB (10/02/2023) Modulistica e procedure
- Procedure operative generali fornite dal Servizio Prevenzione e Protezione
 - poplab001en-it.pdf
 - poplab002aspec.pdf
 - o poplab005.pdf
 - o poplab012 utilizzo gas.pdf
- Documentazione completa procedure_applicabili_lab_criostati.zipmoduli.zip
- qui trovate le procedure specifiche per tutte le operazioni che comportino rischi di vario genere
- Ogni utente del laboratorio deve prendere visione di
 - tutte le Procedure Operative generali indicate sopra
 - delle norme, istruzioni e procedure specifiche del laboratorio Criostati che sono presenti in questa pagina o raggiungibili con un link
- Ogni utente del laboratorio deve sottoscrivere il Mod.052 (Ricevuta ricevimento materiale informativo per sicurezza e salute)
- Ogni utente del laboratorio deve stampare e sottoscrivere la presente pagina

2025/11/12 17:49 5/5 Sicurezza in Laboratorio

Bibliografia (da leggere!)

- "Safety Matters", Oxford Instruments
- "Practical Cryogenics", Oxford Instruments

Il sottoscritto
dichiara di aver <u>letto e compreso</u> le informazioni contenute in questa pagina, nei documenti allegati e nelle pagine collegate.
Data
Firma
1)
tutti gli apparati possono essere supervisionati da remoto
In nessun caso ci può essere permanenza di studenti senza supervisione
Per gli altri interventi la persona autorizzata a chiamare il Call Center è Marco Faverzani
Stato dell'Unità Trattamento Aria, UTA (raggiungibile solo dal dominio mib.infn.it)
studenti, laureandi, dottorandi e borsisti sono lavoratori a tutti gli effetti

From:

https://holmes0.mib.infn.it/marewiki/ - HOLMES+ WIKI

Permanent link:

https://holmes0.mib.infn.it/marewiki/sicurezza/lab_safety?rev=1741342006

la variazione di volume da liquido a gas è di circa 700 volte: 1 litro diventa 0.7 m3

Last update: 2025/03/07 10:06

