

Neutrino mass calorimetric searches in the MARE experiment

NFN

Neutrino 2010 | June 14-19 | Athens, Greece

▷ MARE: Microcalorimeter Array for a Rhenium Experiment

- ▷ spectrometers vs. calorimeters
- calorimetric measurement sensitivity
- ▷ ¹⁸⁷Re vs. ¹⁶³Ho

▷ MARE-1 and MARE-2

- ▷ path for isotope and technique selection
- MARE-1 activities update

Conclusions

MARE project for sub-eV calorimetric m, measurement

MARE: Microcalorimeter Arrays for a Rhenium Experiment Università di Genova e INFN Sez. di Genova, Italy Univ. di Milano-Bicocca, Univ. dell'Insubria e INFN Sez. di Milano-Bicocca, Italy Kirkhhof-Institute Physik, Universität Heidelberg, Germany University of Miami, Florida, USA Wisconsin University, Madison, Wisconsin, USA Universidade de Lisboa and ITN, Portugal Università di Roma "La Sapienza" e INFN Sez. di Roma1, Italy Goddard Space Flight Center, NASA, Maryland, USA PTB, Berlin, Germany FBK, Trento e INFN Sez. di Padova, Italy funded R&D NIST, Boulder, Colorado, USA SISSA - Trieste, GSI Darmstad, JPL/Caltech, CNRS Grenoble, ...

http://crio.mib.infn.it/wig/silicini/proposal/

Experimental approaches for direct m, measurements

Spectrometers: source \neq **detector**

Calorimeters: source ⊆ detector

β calorimeter

ideally measures all the energy *E* released in the decay except for the \overline{v}_e energy: $E = E_0 - E_v$

4

Calorimetry of beta sources

calorimeters measure the entire spectrum at once

- low $E_0 \beta$ decaying isotopes for more statistics near the end-point
- ► best choice ¹⁸⁷Re: $E_0 = 2.5 \text{ keV}$, $\tau_{y_2} = 4 \times 10^{10} \text{ y} \Rightarrow F(\Delta E = 10 \text{ eV}) \sim (\Delta E/E_0)^3 = 7 \times 10^{-8}$
- ▶ other option ¹⁶³Ho electron capture: $E_0 \approx 2.6$ keV, $\tau_{y_2} \approx 4600$ y

Cryogenic detectors as calorimeters

▲ T = E/C with C total thermal capacity (phonons, electrons, spins...)
 ◇ phonons: C~T³ (Debye law) in dielectrics or superconductors below T_c
 ◇ low T (i.e. T≪1K)

• $\Delta E_{ms} = (k_{B} T^{2} O^{1/2})^{1/2}$ due statistical fluctuations of internal energy E

• $\Delta T(t) = E/C e^{-t/\tau}$ with $\tau = C/G$ and G thermal conductance

¹⁸⁷Re calorimetric experiment statistical sensitivity / 1

¹⁸⁷Re calorimetric experiment statistical sensitivity / 2

$$\frac{\text{signal}}{\text{bkg}} = \frac{\left| F_{\Delta E}(m_{\nu}) - F_{\Delta E}(0) \right| t_{M}}{\sqrt{F_{\Delta E}(0) t_{M} + F_{\Delta E}^{pp} t_{M}}} \approx \sqrt{t_{M}} \frac{A_{\beta} N_{det} \frac{\Delta E^{3}}{E_{0}^{3}} \frac{3m_{\nu}^{2}}{2\Delta E^{2}}}{\sqrt{A_{\beta} N_{det} \frac{\Delta E^{3}}{E_{0}^{3}} + 0.3\tau_{R} A_{\beta}^{2} N_{det} \frac{\Delta E}{E_{0}}}} = 1.7 \text{ for 90\% C.L.}$$

$$\sum_{90} (m_{\nu}) \approx 1.13 \frac{E_0}{\sqrt[4]{N_{e\nu}}} \left[\frac{\Delta E}{E_0} + \frac{3}{10} f_{pile-up} \frac{E_0}{\Delta E} \right]^{n+1}$$

Optimal energy interval ΔE $\Delta E = max(0.55E_0\sqrt{\tau_R A_\beta}, \Delta E_{FWHM})$

Sub-eV m_v sensitivity with ¹⁸⁷Re: Montecarlo results

Systematic uncertainties Montecarlo analysis

- those related to the β spectrum shape require further investigation
 - Beta Environmental Fine Structure (BEFS)
 - ¹⁸⁷Re β decay spectrum shape
 - pile-up, background, ...
- instrumental uncertainties seem under control

MARE statistical sensitivity: ¹⁸⁷Re option

	exposu	re requir	ed for 0.	2 eV <i>m</i> , se	nsitivity	bka = 0
	$oldsymbol{A}_{eta}$	$ au_{R}$	ΔE	N _{ev}	exposure	DKG = 0
	[Hz]	[µ s]	[eV]	[counts]	[det×year]	
	1	1	1	0.2×10 ¹⁴	7.6×10 ⁵	5000 pixels/arrav
	10	1	1	0.7×10 ¹⁴	2.1×10 ⁵	8 arrays
	10	3	3	1.3×10 ¹⁴	4.1 ×10 ⁵	10 years
	10	5	5	1.9×10 ¹⁴	6.1×10 ⁵	400 g ^{nat} Re
	10	10	10	3.3×10 ¹⁴	10.5×10 ⁵	
-	exposu	ıre requir				
	$\boldsymbol{A}_{\!\scriptscriptstyleeta}$	$ au_{R}$	ΔE	N _{ev}	exposure	
	[Hz]	[µ s]	[eV]	[counts]	[det×year]	
	1	0.1	0.1	1.7×10 ¹⁴	5.4×10 ⁶	
	10	0.1	0.1	5.3×10 ¹⁴	1.7×10 ⁶	20000 nixels/array
	10	1	1	10.3×10 ¹⁴	3.3×10 ⁶	16 arravs
	10	3	3	21.4×10 ¹⁴	6.8×10 ⁶	10 years
	10	5	5	43.6×10^{14}	13.9×10^{6}	3.2 kg ^{nat} Re

MARE extensions: ¹⁶³Ho electron capture measurement

163 Ho + e⁻ \rightarrow 163 Dy* + ν_{e}

electron capture from shell \ge M1

A. De Rujula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative)
- rate at end-point may be as high as for ¹⁸⁷Re but depends on $Q_{\rm EC}$
 - ► Q_{EC} ? Measured: Q_{EC} = 2.3÷2.8 keV. Recommended: Q_{EC} = 2.555 keV
- $\tau_{1/2} \approx$ **4570 years**: few active nuclei are needed
 - can be implanted in any suitable microcalorimeter absorber
- ¹⁶³Ho production by neutron irradiation of ¹⁶²Er enriched Er

¹⁶³Ho spectrum simulation

- no high statistics and clean **calorimetric** measurement so far
 - ▶ see for example F. Gatti et al., Phys. Lett. B, 398 (1997) 415 and P. Porst poster C26
- Q_{FC} and atomic de-excitation spectrum poorly known
- complex pile-up spectrum

A. Nucciotti, Neutrino 2010 | June 14-19 | Athens, Greece

MARE statistical sensitivity: ¹⁶³Ho option

	exposu	re requir	ed for 0.	2 eV <i>m</i> , se	ensitivity	O = 2200 eV
	\boldsymbol{A}_{β}	$ au_{R}$	ΔE	N _{ev}	exposure	$Q_{EC} = 2200 eV$
	[Hz]	[µs]	[eV]	[counts]	[det×year]	DKG = 0
	1	1	1	2.8×10 ¹³	9.0×10 ⁵	5000 pixels/array
	1	0.1	1	1.3×10 ¹³	4.3×10 ⁵	3 arrays
	100	0.1	1	4.6×10 ¹³	1.5×10 ⁴	1 year
	10	0.1	1	2.8×10 ¹³	9.0×10 ⁴	$\approx 2 \times 10^{17}$ ¹⁶³ Ho nuclei
	10	1	1	4.6×10 ¹³	1.5×10 ⁵	
-						
	exposu	re requir	ed for 0.	1 eV <i>m</i> , se	ensitivity	
	exposu A _β	ו re requir ד _R	ed for 0. <i>∆ E</i>	1 eV m _v se N _{ev}	exposure	
	exposu <i>Α</i> _β [Hz]	i re requir τ _R [μ s]	ed for 0. <i>∆ E</i> [eV]	1 eV m, se N _{ev} [counts]	exposure [det×year]	
	exposu Α _β [Hz] 1	r e requir τ _R [μ s] 0.1	ed for 0.	1 eV m, se N _{ev} [counts] 1.2×10 ¹⁴	exposure [det×year] 3.9×10 ⁶	5000 nivels/array
	exposu <i>A</i> _β [Hz] 1 100	re require τ _R [μs] 0.1 0.1	ed for 0.	1 eV m, se N _{ev} [counts] 1.2×10 ¹⁴ 6.4×10 ¹⁴	exposure [det×year] 3.9×10 ⁶ 2.0×10 ⁵	5000 pixels/array
	exposu <i>A</i> _β [Hz] 1 100 100	re require τ _R [μs] 0.1 0.1 0.1	ed for 0.	1 eV m, se N _{ev} [counts] 1.2×10 ¹⁴ 6.4×10 ¹⁴ 7.4×10 ¹⁴	exposure [det×year] 3.9×10 ⁵ 2.4×10 ⁵	5000 pixels/array 4 arrays 10 years
	exposu <i>A</i> _β [Hz] 1 100 100 100	re require τ _R [μs] 0.1 0.1 0.1 0.1 0.1	ed for 0. △ E [eV] 0.3 0.3 1 1	1 eV m_v se N_{ev} [counts] 1.2×10 ¹⁴ 6.4×10 ¹⁴ 7.4×10 ¹⁴ 4.5×10 ¹⁴	exposure [det×year] 3.9×10 ⁵ 2.4×10 ⁵ 1.5×10 ⁶	5000 pixels/array 4 arrays 10 years $\approx 3 \times 10^{17}$ ¹⁶³ Ho nuclei

Two phases: MARE-1 and MARE-2

MARE-2 full scale experiment aiming at 0.2÷0.1 eV m_v statistical sensitivity MARE-1 collection of activities aiming at isotope/technique selection

MARE-1 activities summary

Isotope physics investigation and systematics assessment

- ¹⁶³Ho + Si-impl/TES (U Genova U Milano-Bicocca U Lisbon/ITN)
- ► AgReO₄ + Si-impl (U Milano-Bicocca U Como NASA/GSFC UW Madison)

• Sensor-Absorber coupling (187 Re/163 Ho) and single pixel design

- ¹⁸⁷Re + TES (U Genova U Miami U Lisbon/ITN)
- ▶ 187 Re + MMC (U Heidelberg) → P. Porst poster C26
- ▶ ¹⁶³Ho + TES (U Genova)
- ▶ 163 Ho + MMC (U Heidelberg) → P. Porst poster C26
- ¹⁶³Ho/¹⁸⁷Re + MKID (U Milano-Bicocca JPL/Caltech U Roma FBK)

Multiplexed sensor read-out

- **SQUID multiplexing** (U Genova PTB)
- ► SQUID microwave multiplexing (U Heidelberg) → P. Porst poster C26

Software tools

- ► Data Analysis (U Miami)
- Montecarlo simulations (U Miami U Milano-Bicocca)

MARE-1 @ Milano-Bicocca with Si implanted thermistors

MARE-1 @ Milano-Bicocca ... / 2

cryogenic and 300K experimental set-up completed

Kevlar cross

25mK

decoupling jig

fluorescence calibration source with lead shield

A. Nucciotti, Neutrino 2010 | June 14-19 | Athens, Greece

MARE-1 @ Genova with TES

- Single TES-Re pixel R&D
 - improve pulse rise time to $\approx \mu s$
 - improve energy resolution from 10 eV to few eV
- Large arrays ($\approx 10^3$ pixels) for 10^4 - 10^5 detector experiment
- Array design large scale experiment oriented
 - high reproducibility, stability, fully energy calibrated...
- Multiplexed SQUID read-out with large bandwidth
- ¹⁶³Ho loaded absorbers preparation
- ¹⁶³Ho spectrum high statistics measurement

MARE-1 @ Heidelberg with Magnetic Micro Calorimeters

- Planar sensors on meander shaped pickup coils
- Optimization of MMCs with superconducting rhenium absorber
 - minimization of the rise-time
 - investigation of energy down-conversion in superconducting absorbers
 - investigating the energy resolution achievable with superconducting absorber
- Calorimetric investigation of new candidates for the neutrino mass direct measurements by electron capture decay
 - ▶ ¹⁶³Ho, ¹⁵⁷Tb, ¹⁹⁴Hg, ²⁰²Hg
 - Development of micro-structured MMCs for ion implantation at ISOLDE
- Microwave SQUID multiplexing for MMCs

MKIDs R&D

- microwave (1-10 GHz) resonating superconducting devices
- exploit the temperature dependence of inductance in a superconducting film
 - **qp detectors** suitable for large absorbers
 - ► **fast** devices for high single pixel activity A_{β} and low pile-up f_{pp}
 - high energy resolution
 - easy multiplexing for large number of pixel

- thermal calorimetry of ¹⁸⁷Re decay can give sub-eV sensitivity on m_{ν}
- calorimetry of ¹⁶³Ho electron capture decay is an interesting alternative
- MARE-1 activities are in progress to
 - ▷ improve the understanding of ¹⁸⁷Re experiment systematics
 - ▷ investigate ¹⁶³Ho production and decay spectrum
 - ▷ develop the single MARE pixel
 - ▷ implement read-out multiplexing schemes
- isotope and detection technique selection for MARE-2 is in progress