CUORE Cryogenic System Design

Angelo Nucciotti

Dip. di Fisica "G. Occhialini", Univ. di Milano-Bicocca and INFN, Sezione di Milano-Bicocca, Italy

Outline

neutrinoless double beta decay

- thermal detectors
- the Cuoricino experiment
- the CUORE experiment
 - design criteria and requirements
 - cryostat design
 - Dilution Unit and Pulse Tubes
 - static thermal analysis
 - 300K-4K cool down
 - base temperature cool down

IOP/BCC Meeting on Cryocoolers, 17th March 2008, Southampton UK

Introduction: double beta decay

CUORE

second order nuclear weak decay of even-even nuclei in *A* even multiplets: ⁴⁸Ca, ⁷⁶Ge, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe ...

■ ββ-0ν:implications

- neutrino must have **mass** to allow helicity non conservation $\Rightarrow \Delta H = 2$
- ► neutrino must be a Majorana particle to allow lepton number non conservation ⇒∆L=2

$$\beta\beta - 0\nu \iff \begin{array}{c} m_{\nu} \neq 0 \\ \nu \equiv \overline{\nu} \end{array}$$

Experimental approaches for $\beta\beta$ -0 ν

detector

electron sum energy [keV]

ß,

Source ⊆ **detector** (calorimetry)

• detector measures sum energy $E = E_{\beta_1} + E_{\beta_2}$

- $\triangleright \beta\beta 0\nu$ signature: a peak at transition energy $Q_{\alpha\beta}$
- scintillators, bolometers, semiconductor diodes, gas chambers

- ▲ large masses
- high efficiency

Experimental sensitivity for $\beta\beta$ -0 ν

 $m_{_{_{}}} \propto \sqrt{1/ au_{_{1/2}}^{_{0}
u}}$

Experimental sensitivity to $\tau_{\frac{9}{2}}^{0\nu}$

• with **no** decay observed • $N_{\beta\beta} \leq (bkg \cdot \Delta E \cdot M \cdot t_{meas})^{\frac{1}{2}}$ at 1σ

Cryogenic detectors as calorimeters

CU	N
RE	

CUORICINO experiment set-up in LNGS

underground in Gran Sasso National Laboratory (Italy) under 1400 m of rock (3600 m water equivalent) \Rightarrow cosmic rays shield

The CUORICINO experiment / 1

TeO₂ thermal calorimeters

- Active isotope ¹³⁰Te
 - natural abundance: a.i. = 33.9%
 - ▲ transition energy: $Q_{\beta\beta}$ = 2529 keV
 - ▲ "short" predicted half life $\langle m_{\nu} \rangle \approx 0.3 \text{ eV} \Leftrightarrow \tau_{1/2}^{0\nu} \approx 10^{25} \text{ years}$
- Absorber material TeO₂
 - Iow heat capacity
 - Iarge crystals available
 - radiopure

CUORICINO experiment @ LNGS

- 62 TeO₂ detectors in the *tower*-like structure foreseen for CUORE
- 11 modules: 4 × 790 g crystals
- 2 modules: 9 × 330 g crystals
- total mass 41 kg
- lacktriangleright intermediate size $\beta\beta$ experiment
- test for radioactivity

The CUORICINO experiment / 2

The CUORICINO experiment / 3

- running since 2003
- total exposure 15.53 kg×y of ¹³⁰Te
- energy resolution FWHM $\Delta E = 8$ keV at $Q_{\beta\beta}$ ($\sigma_{E}=1.3\%$)

The CUORE experiment

- **Cryogenic Underground Observatory for Rare Events** array of 988 natural TeO₂ crystals 5×5×5 cm³ (750 g) @ LNGS
 - ► 740 kg TeO₂ granular calorimeter \Rightarrow 200 kg of ¹³⁰Te
- **aim**: improve a **factor 10** the Cuoricino sensitivity on $\langle m_{\nu} \rangle$
 - \blacktriangleright improve a factor 100 the sensitivity on $\tau_{_{\mathcal{Y}_{2}}}$
- CUORE is the only fully approved second generation $\beta\beta$ experiment

International collaboration: Italy, US, Spain, China, UK

CUORE Cryostat specifications

cryogen-free

Pulse Tubes (with spares)

base temperature <10mK</p>

high cooling power custom Dilution Unit (DU) without 1K pot

dimensions

- external: $\oslash \leq 1687, h \leq 3100$
- ▶ experimental space: $\emptyset \ge 900$, $h \ge 1385$

Iow radioactivity experimental space

- strict material selection
 - only selected pure copper
 - other selected materials only in small amounts (SS, TiAlSn...)
- Iarge cold lead shielding close to detector
- small amount of Multi Layer Insulation (MLI)

heavy load support

- detector: total mass about 1 ton
- lead shielding: total mass about 10 ton

Iow mechanical vibration input on detector

independent detector suspension

Detector stability and duty-cycle in Cuoricino

- safety issues
- LHe cost and logistic
- ► pulse tubes

Cryorefrigerators: Pulse Tubes

■ 5 Pulse Tubes PT415 with remote motor (from Cryomech)
 ▶ P = 1.5W (40W) @ 4.5K (44K)

use no more than 4: one PT should be kept as spare

Cryorefrigerators: dilution unit

- high cooling power cryogen-free custom Dilution Unit
 - DRS-CF-2000 from Leiden Cryogenics
 - ► $P = 5 (>1.5 \times 10^3) \mu W$ @ 12 (120) mK
 - ► *T*_{base} < 6 mK without loads

A. Nucciotti - IOP/BCC Meeting on Cryocoolers, 17th March 2008, Southampton UK - 15

- High cooling power cryogen-free DU R&D at Leiden Cryogenics
 - first high power cryogen-free DU ever!
 - J-T heat exchanger design
 - ³He pre-cooling heat exchangers on PT
 - construction of heat exchangers is in progress
 - open issues:
 - effect of vibrations on base temperature
- PT415 characterization in Milano
 - cooling power measurements (especially at high T)
 - vibration measurements
 - radioactivity measurements
 - open issues under investigation:
 - rotating valve low vibration mounting
 - cold stage high thermal conductance low vibration coupling

		Available	Cooling Power Budget for Systems			Available	
	Т	Cooling power	Dilution Unit DU	Suspension	Wiring WS	Calibration DCS	to
Stage	[K]	[W]	[W]	[W]	[W]	[W]	Cryostat
40K	40-50	1.60E+02	-	1.00E+01	1.00E+01		1.40E+02
IVC	4-5	6.00E+00	4.00E+00	2.00E-01	1.00E+00	3.00E-01	5.00E-01
Still	0.6-0.9	5.00E-03	-	1.20E-03	5.00E-04	5.50E-04	2.75E-03
Cold Pl.	0.05-0.1	2.00E-05	-	1.00E-05	3.00E-06	1.10E-06	5.90E-06
Mixing Ch.	0.01	5.00E-06	_	1.00E-06	0.00E+00	1.20E-06	2.80E-06

note on 40K and IVC cooling power:

The total cooling power reported here is for 4 Pulse Tubes running at the reference

working temperatures of 45K and 4.5K.

note on **DU Still** cooling power:

The Still cooling power depends on the He3/He4 flow rate (it is about 40mW/(mmole/s)).

The 5mW cooling power mentioned here allows the user to control the flow rate between 0.1 and 4mmole/s by adding extra Joule heating power.

note on **DU Cold Plate** cooling power:

Specification cooling power is 125 microW. The 20 microW cooling power mentioned here is a safe upper limit to avoid side effects on the DU Mixing Chamber temperature.

008, Southampton UK - 18

MATERIALS

- everything *large* is out of Cu
 - low H2 content Cu for T<0.05K
- <u>everything</u> is out Cu inside Pb shield
- exceptions:
 - OVC and IVC top flanges out of 316LN
 - tie rods (316LN and low *G* materials)

COLD LEAD SHIELDINGS

- Top cold Pb disk
 - independently suspended
 - at Cold Plate temperature (or Still?) to minimize heat load on MC
- Top Pb ring at Still temperature
- Lateral Pb at 4K

cold lead shieldings

Detector and cold lead shield suspensions / 1

Detector and cold lead shield suspensions / 2

[dB]

(A/A0)

MINUS-K isolator with Negative Stiffness Mechanism

Mechanical vibration filter

- ▷ pendulum ~0.4 Hz
- two stages longitudinal filter ³

	material	mass	Tot mass
Vessels		[kg]	[kg]
OVC flange	SS 304L	1122	
OVC shield	CuOFE	1943	3065
40K flange	CuOFE	308	
40K shield	CuOFE	681	989
IVC flange	CuOFE	870	
IVC shield	CuOFE	1152	2022
Still flange	CuOFE	543	
Still shield	CuOFE	351	894
Cold plate flange	CuOFE	234	
Cold plate shield	CuOFE	297	531
MC flange	Cu NOSV	131	
MC shield	Cu NOSV	270	401
Lead shields			
Still top ring	Pb	1718	
Still lateral	Pb	5408	
lead support	CuOFE	243	7369
Cold plate top	Pb	2745	
lead support	CuOFE	570	3316
Detector			
crystals	TeO2	751	
top+bottom	Cu NOSV	285	
frames	Cu NOSV	579	1615

External lead shielding and hut

- 2nd Level
 - Top flange access
 - Suspension access
 - DU Gas Handling
 - Electronics & DAQ

External lead shielding and hut

- 2nd Level
 - Top flange access
 - Suspension access
 - DU Gas Handling
 - Electronics & DAQ

20 tons external lead shielding

- 1st Level
 - Cryostat access
- Clean room
- ground floor
 - services (pumps,...)
 - shields and screens storage

Other systems to integrate in the cryostat

Thermal model / 1

1 UK - 29

Thermal model / 2

	radiation	cryo. bars	wiring	ports	det. susp	Pb susp	Spare PT	DCS	He3	TOT [W]
40K	1.07E+02	8.67E+00		9.17E+00	2.45E+00	5.03E+00	1.72E+01		-	1.49E+002
IVC	1.99E-01	4.39E-01	8.06E-01	4.36E-01	1.28E-01	2.63E-01	8.00E-01	3.00E-01	1.00E+00	4.37E+000
still	5.08E-04	6.35E-04	1.58E-04		1.96E-04	4.01E-04		5.50E-04	-	2.45E-03
Cold P	1.33E-07	5.57E-07	2.83E-06			3.51E-07		1.10E-06	-	4.97E-06
MC	8.04E-11	2.67E-09	4.17E-08		1.71E-07			1.20E-06	-	1.42E-06

still power 30 mW
³He flow = 1 mmol/s
3 active Pulse Tubes

Temperatures [K]				
40K shield 41.56				
IVC	4.12			
DU still	0.62			
DU Heat-ex	0.07			
DU MC	0.008			

Cooling down: from 300K to 4K / 1

- 40K shield cooled by the 5 PT415
- IVC cooled by forced helium flow and the 5 PT415
- helium cooled by up to 3 GM AL600 (600W@77K)
- helium circulated by 2 roots

Cooling down: from 300K to 4K / 2

A. Nucciotti - IOP/BCC Meeting on Cryocoolers, 17th March 2008, Southampton UK - 33

Cooling down: from 300K to 4K / 3

Cooling down: from 1K to base temperature

The project is challenging!

first attempt ever to cool down a mass this large to 10 mK

Cryostat design is almost completed

- the tender for Cryostat production is in progress
- Fast cooling with GM is still in the conceptual design phase
- Design of other systems (suspensions, wiring, calibration...) is in progress

Pulse Tube characterization is in progress

- check performances
- measure mechanical vibration and design thermal couplings
- DU construction is in progress
- DU and Cryostat should delivered to LNGS by the end of 2008
 - Commissioning should take place during 2009
 - The Cryogenic system should be completed by the end of 2009

The CUORE experiment should start data taking in 2011