Application of cryogenic detectors in subnuclear and astroparticle physics

Angelo Nucciotti Dipartimento di Fisica "G. Occhialini" Università di Milano-Bicocca and INFN Sezione di Milano

11th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN August 1st, 2005

Outline

subnuclear physics: i.e. neutrino physics

▲ heaviest neutrino mass $m_{2,3} \ge \sqrt{(\Delta m_{atm}^2)} \approx 0.05 \text{ eV}$

still missing:

- mass scale (i.e. lightest neutrino mass)
- hierarchy $(m_1 < m_2 \ll m_3 \text{ or } m_3 \ll m_1 \approx m_2)$ or degeneracy $(m_1 \approx m_2 \approx m_3)$?
- Dirac or Majorana particle? ...
- **b** direct neutrino mass measurement (β decay)
- ▶ neutrinoless double beta decay ($\beta\beta$ -0 ν) searches
- astroparticle physics: i.e. non-baryonic dark matter
 - ▲ universe is flat: $\Omega=1$
 - ▲ *A*-CDM model: 1/3 of the universe is *matter, largely non-baryonic*

still missing:

- exact matter composition
- what is the non-baryonic matter? ...
- cold dark matter direct searches
- many exciting news in the last years!

 \triangleright cryogenic detectors are doing the right physics at the right time!

role of present and next generation cryogenic detector experiments

Why cryogenic detectors?

Many years of R&D because of several pros and few cons:

- true calorimeters
- fully sensitive to recoils
- wide material/nuclei choice:
 - Si, Ge, Re, Al₂O₃, TeO₂, CaWO₄, LiF, BGO, CdWO₄, PbMoO₄, CaF₂, AgReO₄, ...
- high energy resolution, low threshold
- Iarge masses
- segmentation to reduce background
- fully sensitive to surface radioactivity
- difficult to reduce close materials (holders, wires, cryostats,...)
- not easy to run stable
- hybrid detectors can do particle identification (i.e. e/γ - recoil, e/γ - α):
 - heat + scintillation detection
 - heat + ionization detection
- can be position sensitive: timing, PSD+segmentation

Cold DM and \beta\beta-0\nu searches

kg – ton keV – MeV

Direct neutrino mass measurements

Cryogenic detectors: from prototypes to next generation

'90s TeO₂, Ge, Si, Al₂O₃, Re, AgReO₄,...
⇒ lot of R&D on these exotic detectors...
2000 CDMS, Edelweiss, Cresst, MANU, MIBETA (TeO₂, AgReO₄),...
⇒ first important physics result!
today present generation experiment: Cuoricino, CRESST-II, CDMS-II, Edelweiss-II, MARE-I (MANU2...)
cyogenic detectors has become "normal"!

Indirect neutrino mass measurement

- Neutrinoless Double Beta Decay (A, Z) \rightarrow (A, Z+2) + 2 e^-
 - \triangleright requires Majorana neutrinos: $v \equiv \overline{v}$
 - \triangleright measures effective neutrino mass: $\langle m_v \rangle = |\sum_k m_{vk} \eta_k | U_{ek} |^2 |$
 - ▷ controversial evidence for $\beta\beta$ -0 ν of ⁷⁶Ge in the Heidelberg-Moscow experiment
 - $\triangleright \langle m_{\nu} \rangle = 0.1 \div 0.9 \text{ eV}$
 - Cuoricino, CUORE or GERDA will check this claim in the next years

Cosmological bounds

- ▷ Cosmic Microwave Background (WMAP,...)
 ▷ Large scale structure surveys (2dFGRS, Lyα,...)
 - $\blacktriangleright \sum m_j \le 0.7 \div 2 eV$
 - extremely model dependent

Present $\beta\beta$ - 0ν experimental situation

- best result per isotope to date
- exposure: $exp = M \times t_{meas}$

positive result

running experiments

 $\sum (\tau_{1/2}^{0\nu}) \propto \epsilon \cdot \frac{i.a.}{A} \sqrt{\frac{Mt_{meas}}{\Delta E \cdot bka}}$

pe		atest esult	$oldsymbol{Q}_{etaeta}$	i.a.	enrich	exp	tech	rial	$\tau_{1/2}^{0_{V}}$	$\langle m{m}_{_{m{V}}} angle$ [eV]		$\tau_{1/2}^{0_{\mathcal{V}}} _{10\text{meV}}$
oto	experiment		[keV]	[%]	[%]	[kg×y]		ate	[10 ²³ y]			[10 ²⁸ y]
is								Е		min	max	max
⁴⁸ Ca	Elegant VI	2004	4271	0.19	-	4.2	S	CaF ₂	0.14	7.20	44.70	8.8
⁷⁶ Ge	Heidelberg/Moscow	2001	2039	7.8	87	71.7	i.	Ge	120.0	0.44		17.7
⁸² Se	NEMO-3	2004	2995	9.2	97	0.55	t	Se	1.9	1.30	3.60	5.6
¹⁰⁰ Mo	NEMO-3	2004	3034	9.6	95-99	4.1	t	Мо	3.5	0.70	1.20	3.9
¹¹⁶ Cd	Solotvina	2003	3034	7.5	83	0.5	S	$CdWO_4$	1.7	1.70		4.7
¹³⁰ Te	Cuoricino	2005	2533	34.5	-	5	b	TeO ₂	18.0	0.21	1.10	5.8
¹³⁶ Xe	DAMA	2002	2476	8.9	69	6.4	S	Xe	12.0	1.10	2.90	12.1
¹⁵⁰ Nd	Irvine TPC	1997	3367	5.6	91	0.01	t	Nd_2O_3	0.012	3.00		0.1
/	1 m'											
< n	$\langle \eta_{v} \rangle^{-} = \overline{F_{N}} \cdot \overline{\tau_{1/2}^{0}}$	s sci i ioni	ntillation zation	on u	spread ncertain	e to s in F .	half-life expected for $\langle \boldsymbol{m}_{,} angle = 10 \ \mathbf{meV}$					
F _N ≡	$G^{0\nu}(Q_{\beta\beta},Z) I$	t trac b bol	king ometr	ic i.e	. nuclea	hysics	and the less favorable F_{N}					
Angelo Nucciotti, LTD-11, Aug 1 st , 2005 6												

The CUORE experiment <u>Cryogenic Underground Observatory for Rare Events</u> ■ array of 988 TeO₂ crystals 5×5×5 cm³ (750 g) @ LNGS ▶ 740 kg TeO₂ granular calorimeter \Rightarrow 200 kg of ¹³⁰Te $\beta\beta$ -0 ν , Cold Dark Matter, Axions searches Cryogen free and low background refrigerator Е with $T_{\text{base}} < 6 \text{ mK}$ and $P > 5\mu W@12mK$ **CUORE** detector 19 towers - 52 detectors each Pb shielding (30 cm) C. Arnaboldi et al., CUORE: A Cryogenic Underground roman Pb shielding (3+3 cm) Observatory for Rare Events, about 10 tons cold Pb shielding NIM A 518 (2004) 775

loricino:

LCUORE tower

Future ββ-**0**ν **experiments**

most representative proposals per isotope

- some proposed experiments are still too generic to fit in the table (NEMO-4, XMASS, COBRA, Nano-crystals...)
- only the **CUORE** experiment is **fully approved** and is being prepared **full size**
- $\tau_{\frac{1}{12}}^{0}$ sensitivity strongly depends on *bkg* estimation
- cost is only very indicative

	pe	$oldsymbol{Q}_{etaeta}$	anb	i.a.	М	t _{meas}	$\sigma_{\rm E}$	bkg	$\tau_{\frac{1}{2}}^{0_{\mathcal{V}}}$	$\langle n$	$ n_{v} angle$		st
	oto	[keV]	chni	[%]	[kmol]	[y]	[keV]	[c/y]	[10 ²⁸ y]	[meV] min max		project status	Ö
	is		te	*				**					
CANDLES IV+	⁴⁸ Ca	4271	S	2	0.9	5	73	0.35	0.30	29	54	R&D (III: 5 mol)	
Majorana	⁷⁶ Ge	2039	i	90	6.6	5	2	1	0.40	21	67	R&D (SEGA)	\$\$\$
GERDA-II	⁷⁶ Ge	2039	i	90	0.5	2	2	0.2	0.02	92	297	APPROVED (I: 0.2 kmol)	\$\$
Genius	⁷⁶ Ge	2039	i	90	13.0	10	2	0.4	1.00	13	42	R&D (CTF: 10kg)	\$\$\$
MOON III	¹⁰⁰ Mo	3034	t	85	8.5	10	66	3.8	0.17	13	48	R&D (I: small)	
CAMEO III	¹¹⁶ Cd	3034	S	83	2.7	10	47	4	0.10	22	69	proposed	
CUORE	¹³⁰ Te	2533	b	35	1.7	10	4	7.5	0.07	15	91	APPROVED: start in 2010	\$
EXO	¹³⁶ Xe	2476	t	65	48.0	10	49	0.55	1.30	12	31	R&D (1.5 kmol)	\$\$
DCBA-II	¹⁵⁰ Nd	3367	t	80	2.7		85		0.01	16	22	R&D (T: small)	
GS0	¹⁶⁰ Gd	1730	S	22	2.5	10	83	200	0.02	6	5	proposed	

- **S** scintillation
- *i* ionization
- t tracking
- b bolometric

natural isotopic abundance (i.e. no enrichment required)

****** only $\beta\beta$ -2 ν background considered

Role of $\beta\beta$ -0 ν in future neutrino physics

• next generation experiments aim at $\langle m \rangle \approx 10 \text{ meV}$

- discovery with (*m*) ≥ 10 meV
 - ▶ the neutrino is a Majorana particle
 - inverse hierarchy or degeneration
 - absolute v mass scale fixed in case of degeneration
- upper limit with $\langle m_{v} \rangle < 10 \text{ meV}$
 - normal hierarchy (only with Majorana neutrinos)

degeneration: $m_1 \approx m_2 \approx m_3$

inverse hierarchy: $m_3 \ll m_1 \approx m_2$

normal hierarchy: $m_1 < m_2 \ll m_3$

 $\langle \boldsymbol{m}_{v} \rangle = \boldsymbol{f}(\boldsymbol{m}_{k}, \boldsymbol{\vartheta}_{1k}, \boldsymbol{\eta}_{k})$ $\boldsymbol{\vartheta}_{1k} \Leftrightarrow \boldsymbol{U}_{ek}, \boldsymbol{\eta}_{k} \text{CP phases}$

 spread due to CP phases
 spread due to oscillation parameters uncertainties

Direct neutrino mass measurement

- Weak decay kinematics: study of decays with neutrinos in the final state
 - β decay end-point study \Rightarrow free of theoretical assumption
 - > ³H β decay with electrostatic spectrometers:
 - ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \overline{\nu}_{e} \rightarrow m_{\nu_{e}} \leq 2.1 \text{ eV/c}^{2} \text{ at } 95\% \text{ C.L.}$ (Mainz, Troitzk)
 - > ¹⁸⁷Re β decay with thermal calorimeters:

¹⁸⁷Re \rightarrow ¹⁸⁷Os + e⁻ + $\overline{\nu}_{e}$ \rightarrow $m_{\nu_{e}} \leq$ **15 eV/c²** at 90% C.L. (MANU, MIBETA)

Future neutrino mass experiments: the MARE project

an international collaboration for a new project MARE: <u>Microcalorimeters Array for Rhenium Experiments</u> Università di Genova e INFN-Genova, Kirchhoff Institut-Universität Heidelberg, Università dell'Insubria, Università di Milano-Bicocca, INFN-Milano, NASA Goddard Space Flight Center, ITC-irst/Trento, Wisconsin University- Madison

- goal: calorimetric experiment with $0.1 \div 0.2 \text{ eV} m_{\nu}$ sensitivity
 - systematics different from KATRIN spectrometer experiment
- phase I: 2006 2009
 - 2 new experiments with TES (MANU2) and thermistor (MIBETA2) arrays
 confirm present spectrometer results around 2 eV
 - check for unexpected sources of systematics at 1 eV level (BEFS?)
- **phase II:** 2010 ...
 - $ightarrow m_{v}$ statistical sensitivity better than 0.2 eV (\approx KATRIN experiment)
 - \triangleright 10¹⁴ events with $\triangle E \leq 5 \text{eV}$ and $\tau \leq 5 \mu \text{s} \Rightarrow 10^4$ channel arrays, ≥ 5 Hz/ch
 - needs new techniques: Magnetic Micro-Calorimeters or TES
 - $hinspace \approx 5$ years R&D \Rightarrow start in 2010

Competitiviness of a cryogenic neutrino mass experiments

Neutrino masses from single β and $\beta\beta$ -0 ν decays

13

Situation of direct dark matter searches

14

Future DM experiments

- To probe SUSY *predictions* ($\sigma \approx 10^{-47} \text{ cm}^2$)
 - $^{\triangleright}$ wait for LHC
 - $^{\triangleright}$ go for 1 ton experiment with (improved) discrimination
 - technical challenge very similar to CUORE
 - ready around 2010?
 - \triangleright other techniques with discrimination are catching up (two-phase LXe)

• today cryogenic detectors are *normal* for $\beta\beta$ -0 ν and DM searches

- next generation cryogenic detector experiments need just a scaling with moderate detector improvements
 - we are designing now the experiments will start data taking in 2010-15
- cryogenic detectors may have the opportunity to discover something!
- more work must be devoted to make systems reliable and detectors uniform
- radioactive background remains an issue for all techniques
- other techniques are developing new innovative approaches
 for other 5-10 years cryogenic detectors will lead these fields thanks to the past years R&D