

Angelo Nucciotti

Dipartimento di Fisica "G. Occhialini",Università di Milano-Bicocca INFN - Sezione di Milano-Bicocca

- direct neutrino mass measurement
 - ▷ spectrometers vs. calorimeters
 - calorimeter statistical sensitivity
- ▷ ¹⁸⁷Re calorimetric experiment state-of-the-art
 - know systematics
- ▷ future of calorimetric experiments: the MARE project
- MARE project status
 - ▷ MARE-1
 - MARE R&D

Wisconsin University, Madison, July 27th, 2009

tool	measured quantity	present sensitivity	future sensitivity			
Cosmology CMB+LSS	$m_{\Sigma} \equiv \sum m_i$	0.7÷1 eV	0.05 eV	yes	large	
Neutrinoless Double Beta decay	$m_{\beta\beta} \equiv \sum m_i U_{ei}^2 $	0.5 eV	0.05 eV	yes	yes	
Beta decay end-point	$m_{\beta} \equiv (\sum m_i^2 U_{ei} ^2)^{1/2}$	2 eV	0.2 eV	no	large	
		model dependency —				
		systematic uncertainties ——				

Neutrinos masses in single β and $\beta\beta$ -0 ν decays

Fogli et al. hep-ph/0608060

Experimental approaches for direct measurements

Spectrometers: source ≠ detector

Calorimeters: source ⊆ detector

β calorimeter

ideally measures all the energy *E* released in the decay except for the \overline{v}_e energy: $E = E_0 - E_v$

Spectrometers present results

Calorimetry of beta sources

• calorimeters measure the entire spectrum at once \Rightarrow use low $E_0 \beta$ decaying isotopes to achieve enough statistics near the end-point \Rightarrow best choice ¹⁸⁷Re: $E_0 = 2.47$ keV $\Rightarrow F(\delta E = 10 \text{ eV}) \sim (\delta E/E_0)^3 = 7 \times 10^{-8}$

Calorimetric experiment statistical sensitivity / 1

7

Calorimetric experiment statistical sensitivity / 2

$$\frac{\text{signal}}{\text{bkg}} = \frac{\left| F_{\Delta E}(m_{\nu}) - F_{\Delta E}(0) \right| t_{M}}{\sqrt{F_{\Delta E}(0)t_{M} + F_{\Delta E}^{\rho\rho}t_{M}}} = \sqrt{t_{M}} \frac{A_{\beta}N_{det}\frac{\Delta E^{3}}{E_{0}^{3}}\frac{3m_{\nu}^{2}}{2\Delta E^{2}}}{\sqrt{A_{\beta}N_{det}\frac{\Delta E^{3}}{E_{0}^{3}} + 0.3\tau_{R}A_{\beta}^{2}N_{det}\frac{\Delta E}{E_{0}}}} = 1.7 \text{ for } 90\% \text{ C.L.}$$

$$\sum_{90} (m_{\nu}) \approx 1.13 \sqrt[4]{\frac{E_0^3 \Delta E}{A_\beta t_M N_{det}}} + 0.3 \frac{\tau_R E_0^5}{t_M N_{det} \Delta E}$$

Optimal energy interval ΔE $\Delta E = max(0.56E_0\sqrt{\tau_R A_\beta}, \Delta E_{FWHM})$

Cryogenic detectors as calorimeters

• $\Delta T(t) = E/C e^{-t/\tau}$ with $\tau = C/G$ and G thermal conductance

Resistive thermometers: thermistors

- doped semiconductors at Metal-Insulator-Transition (N_c =3.74×10¹⁸ cm⁻³ for Si:P)
- at $T \ll 10K \rightarrow$ phonon assisted variable range hopping conduction (VRH)

$$\rho(T) = \rho_0 \exp(T_0/T)^{\gamma}$$

- $ightarrow T_0$ increases with decreasing net doping N
- ► $T < 1 \text{ K} \Rightarrow \gamma = \frac{1}{2}$ (VRH with Coulomb Gap)

Thermal detectors for calorimetric experiments

 $\label{eq:started_st$

metallic rhenium single crystals

- ► superconductor with $T_c = 1.6 K$
- NTD thermistors
- MANU experiment (Genova)
- dielectric rhenium compound (AgReO₄) crystals
 - Silicon implanted thermistors
 - MIBETA experiment (Milano)

 $\rightarrow m_{\nu} < \approx 15 \text{ eV}$

Systematics summary: calorimeters vs. spectrometers

Calorimetry systematics

- detector response function (energy dependence, shape,...)
- energy dependent background
- pile-up effects
- condensed matter effects: BEFS
- ¹⁸⁷Re decay spectral shape
- ...?

Spectrometer systematics

- decays to excited final states
- energy losses in the source
- e⁻ T₂ elastic scattering
- spectrometer stability (HV)
- source stability (density, potential, charging...)
- energy dependent background
- •...?

completely different systematics!

Montecarlo simulations: statistics and systematics

generate many (500-1000) simulated experiments

 \triangleright calculate total β spectrum

 $\triangleright \ S(E) = (N_{\rm ev} \ (N_{\beta}(E,0) + f_{\rm pp}N_{\beta}(E,0) \otimes N_{\beta}(E\,0)) + b(E)) \otimes g(E)$

- N_{ev} total β statistics
- $N_{\beta}(E,0)$ normalized ¹⁸⁷Re spectrum for $m_{\nu} = 0$
- f_{pp} fraction of unresolved β pile-up events
- b(E) background (usually constant)
- g(E) detector energy resolution function (usually gaussian)
- \triangleright generate spectra introducing Poisson fluctuations in S(E)

 \triangleright fit the spectra with standard technique

▷ obtain 90% C.L. m_{ν} sensitivity $\sum_{90} (m_{\nu})$ from $\sqrt{(1.7\sigma)}$ of m_{ν}^2 distribution

Montecarlo input parameters vs. real experiment parameters

$$\triangleright N_{\rm ev} = N_{\rm det} t_{\rm M} A_{\beta}$$

$$\triangleright f_{pp} \approx au_{R} A_{\beta} (au_{R} pprox au_{rise})$$

- Assessing systematic uncertainties with Montecarlo simulations
 - generate simulated experimental spectra with systematic effect
 - analyze spectra without effect
 - \triangleright obtain $\sum_{90} (m_{\nu})$ and Δm_{ν}^2 as function of effect magnitude

Sub-eV m_v statistical sensitivity

Sub-eV m_v statistical sensitivity / 2

Sub-eV m_v statistical sensitivity / 3

Effect of background on statistical sensitivity

MC analysis of systematics: large arrays

MC analysis of systematics: more effects...

- linear term in background
- linear deviation from quadratic beta spectrum

BEFS: Re vs. AgReO₄

BEFS: Beta Environmental Fine Structure Modulation of the electron emission probability due to the

atomic and molecular surrounding of the decaying nucleus: it is explained by the wave structure of the electron (analogous of EXAFS)

A. Nucciotti, Madison, July 27th 2009 20

BEFS in MARE

Statistics and systematics summary

exposure required for 0.2 eV *m*, sensitivity

\boldsymbol{A}_{β}	$ au_{R}$	ΔE	N _{ev}	exposure
[Hz]	[μs]	[eV]	[counts]	[det×year]
1	1	1	0.2 1014	7.6 10 ⁵
10	1	1	0.7 10 ¹⁴	2.1 10 ⁵
10	3	3	1.3 10 ¹⁴	4.1 10 ⁵
10	5	5	1.9 10 ¹⁴	6.1 10 ⁵
10	10	10	3.3 10 ¹⁴	10.5 10 ⁵

source of uncertainty	quantity describing the uncertainty	<i>maximum</i> <i>uncertainty for</i> $\Delta m_{\nu}^2 < 0.01 \text{ eV}^2$
error on energy resolution ΔE	$\sigma_{ m err}(\Delta E)/\Delta E$	0.02
error on single pixel energy calibration K	σ (K)/K	0.0004
spread in energy resolution ΔE in the array	$\sigma_{ m spread}(\Delta E)/\Delta E$	0.1
underlying constant background	$N_{ m bkg}/N_{ m ev}$	10-8

¹⁸⁷Re calorimetric experiment statistical sensitivity

 $\Sigma(m_{\nu}) \approx$ 20 eV

MIBETA detectors with
$$\Delta E_{FWHM} = 30 \text{ eV}, \tau_R = 1.5 \text{ ms}$$
 \triangleright for $A_{\beta} = 0.15 \text{ decay/s} \rightarrow f_{pp} = 2 \times 10^{-4}$ \triangleright $t_M = 3.6 \text{ y} \times \text{det} \rightarrow 1.6 \times 10^6 \text{ events}$ \triangleright $\sum_{exp} (m_{\nu}) = 15 \text{ eV}$

10 -14

$$\Sigma(m_{\nu})$$
= 2 eV

b for
$$A_{\beta} = 0.3$$
 decay/s → $f_{pp} = 3 \times 10^{-5}$
 $\sum_{MC} (m_{\nu}) = 2$ eV with 2×10¹⁰ events
 $\sum_{M} = 2000$ y×det

 $\sum(m_{\nu}) = 0.2 \text{ eV}$

• detectors with $\Delta E_{\text{FWHM}} = 1 \text{ eV}, \tau_{\text{R}} = 1 \mu \text{s}$ \triangleright for $A_{\beta} = 1 \text{ decay/s} \rightarrow f_{\text{pp}} = 10^{-6}$ $\triangleright \sum_{\text{MC}} (m_{\nu}) = 0.2 \text{ eV}$ with $\rightarrow 2.5 \times 10^{13}$ events $\triangleright t_{\text{M}} = 8 \times 10^5 \text{ y} \times \text{det}$

A project for a New Rhenium Experiment: MARE

goal: a sub-eV direct neutrino mass measurement complementary to the KATRIN experiment

MARE-1

▷ new experiments with large arrays using available technology and ready to start as soon as possible (i.e. 2008..2009)

MARE-2

▷ very large experiment with a m_v statistical sensitivity close to KATRIN but still improvable: 5 years from now for further detector R&D

MARE Project: interested institutions

MARE: Microcalorimeter Arrays for a Rhenium Experiment Università di Genova e INFN Sez. di Genova Goddard Space Flight Center, NASA, Maryland, USA Kirkhhof-Institute Physik, Universität Heidelberg, Germany Università dell'Insubria, Università di Milano-Bicocca e INFN Sez. di Milano-Bicocca NIST, Boulder, Colorado, USA ITC-irst, Trento e INFN Sez. di Padova PTB, Berlin, Germany University of Miami, Florida, USA Università di Roma "La Sapienza" e INFN Sez. di Roma1 SISSA, Trieste Wisconsin University, Madison, Wisconsin, USA GSI Darmstad, Caltech, CNRS Grenoble, ... funded R&D

http://crio.mib.infn.it/wig/silicini/proposal/

MARE-1: TES vs. silicon implanted thermistors

aim: high statistics measurement with a ready-to-use technology
 few eV statistical sensitivity in few years

 \triangleright investigate systematics in thermal calorimeters with $10^9 \div 10^{10}$ events

cross-check spectrometer results

MARE-1 SEMICON (MIBETA2)

U. Milano-Bicocca / INFN Sez. Mi-Bicocca U. Insubria / INFN Sez. Mi-Bicocca ITC-Irst / INFN Sez. Padova U. Wisconsin, Madison NASA/Goddard

about 300 element arrays
 well known Si implanted thermistors
 AgReO₄ crystals

MARE-1 TES (MANU2) U. Genova / INFN Sez. Genova U. Miami, Florida PTB Berlin, Germany

about 300 element arrays
 newly developed
 transition edge sensors
 Re crystals

cross check
 common effort on systematics
 joint analysis to improve limit

MARE-1: MC simulations vs. formula

MARE-1 SEMICON: the NASA/Goddard XRS2 array

6×6 array: optimized for X-ray spectroscopy \rightarrow ASTRO-E2 mission **detectors**: silicon implanted thermistor with HgTe absorber at T = 60 mK

MARE-1 SEMICON

NASA/GSFC XRS2-2 arrays 6x6 pixels flat AgReO₄ single crystals m ≈0.5 mg detector R&D phase results best operating T ≈ 90mK ΔE ≈ 30 eV, τ_R≈ 250 µs

MARE-1 SEMICON: statistical sensitivity from MC

setup ready for 8 arrays

- 288 AgReO₄ crystals
- $^{\rm o}$ now starting with 2 arrays (72 ch.)
- gradual deployment

further detector optimization

calibration source pulling string

connection^{*} boxes

MARE-1 TES: Superconducting transition edge sensors

- superconductor thin films used inside the phase transition at T_c
 - ▶ pure superconductors: Ir (T_c = 112 mK), W (T_c = 15 mK), ...
 - ▶ metal-superconductor bilayers ⇒ tunable T_c (20÷200 mK) : Mo/Cu, Tl/Au, Ir/Au, ...
 - high sensitivity ($A \approx 100$) \Rightarrow high energy resolution
 - high electron-phonon coupling ⇒ high intrinsic speed
 - low impedance ⇒ SQUID read-out ⇒ multiplexing for large arrays

MARE-1 TES: sensor development

• Pulsed Laser Deposition of thin films: pure Ir or Ir bilayers

0.5 mm

- detectors with metallic rhenium absorbers¹⁰⁰
- 300 channel array
- detector R&D goal:
 - 1 mg Re crystals with: $\Delta E = 5 \text{ eV}$, $\tau_{R} = 10 \text{ }\mu\text{s}$
 - a further step towards MARE-2
- two read-out options
 - JFETs with cold impedance transformer
 - frequency multiplexed SQUIDs (FDM)
 - first 3x3 FDM chip is under test now

MARE-1 TES: statistical sensitivity

▶ about 3×10^{10} events in 3 years $\Rightarrow m_{\nu} < 1.8 \text{ eV}$

MMC – Magnetic Micro Calorimeters (Heidelberg)

sensor design optimization for MARE-2
 rhenium absorbers is in progress
 ▷ meander pick-up coils without external *B* field

MMC: recent achievements (Heidelberg)

MKIDs R&D for MARE-2

• exploit the temperature dependence of inductance in a superconducting film

- qp detectors suitable for large absorbers
- **fast** devices for high single pixel activity A_{β} and low pile-up f_{pp}

high energy resolution multiplexing for very large number of

Sensitivity

 $\Delta E = 5 eV$

- $t_{\rm M}$ = 36000 detectors x 3 years
- $A_{\beta} = 20 \text{ c/s/det}$

•
$$\tau_{rise} = 1 \ \mu s \Rightarrow m_{v} < 0.2 \ eV$$

•
$$\tau_{\rm rise} = 100 \ \mu s \Rightarrow m_{\rm v} < 0.4 \ {\rm eV}$$

Technique largely still to be proved!!

Interested institutions

- INFN Milano-Bicocca
- INFN Roma (exp. Rich: R&D for CMB)
- ITC-irst
- Caltech
- CNRS Grenoble

MARE-2: topics in single pixel design

MARE extensions: ¹⁶³Ho electron capture measurement

- calorimetric measurement of non-radiative Dy atomic de-excitations (Coster-Kronig, Auger...)
- fraction of events at end-point may be as high as for ¹⁸⁷Re: depends on Q_{FC} (\approx 2.5 keV)

 $\blacktriangleright Q_{\rm FC}?$

- fewer active nuclei are needed ($\tau \approx 4000$ y)
 - can be implanted in any suitable absorber
 - first implantation tests at ISOLDE are encouraging
- new NASA/Goddard TES arrays ($\Delta E = 2 \text{ eV}$) can be implanted with ¹⁶³Ho

A. Nucciotti, Madison, July 27th 2009

42

- \circ thermal calorimetry of ¹⁸⁷Re decay can give sub-eV sensitivity on m_{ν}
- the MARE project is taking off
- MARE-1 intermediate scale experiments are starting
- R&D for MARE-2 large scale sub-eV experiment is starting
 MMC R&D is already in progress
 - array microfabrication ha made huge progresses
 - sensor performances are close to what is needed for MARE
 - new MUX schemes are being developed
 - ▷ New ideas are coming up (MKIDs, ¹⁶³Ho)

MARE and the cosmological relic neutrino background

MARE-2: 50000 detectors, 20 mg each 650 g of ¹⁸⁷Re 4×10⁻⁸ counts/year... 🛞

A. G. Cocco, G. Mangano and M. Messina, arXiv:hep-ph/0703075v2

- $\circ \Sigma_{90}(m_v) = 0.1 \text{eV} \text{ for } N_{ev} = 10^{15}; \Delta E = 3 \text{ eV}; f_{pp} = 10^{-5}$
 - $\triangleright \tau_{R} = 1 \ \mu s$ and 10 decays/s per detector
 - \triangleright 3.2×10⁶ detector×year... \otimes

Recognized systematics in calorimeters

- detector response function (energy dependence, shape,...)
 - ▷ important in $AgReO_4(\rightarrow)$
- energy dependent background
 - \triangleright study low energy environmental and material radioactivity (\rightarrow)
- condensed matter effects: BEFS
 - ▷ observed in Re and AgReO₄: improve modeling (→)
- pile-up effects
 - $\,\triangleright\,$ under investigation with MC methods (\rightarrow)
- analysis artifacts
 - ▷ to be studied by MC methods
- ▼¹⁸⁷Re decay spectral shape
 - \triangleright improve Buhring parametrization
- Iong term metastable excited states
 - should be negligible
- electron surface escape
 - ▷ should be negligible
- ▼...?
 - more statistics

Detector response function

X-ray peaks have tails on low energy side

• 1~6 keV X-rays in AgReO₄ have an attenuation length λ < 2 μ m

- are the response functions for X-rays and for β s from ¹⁸⁷Re decay the same?
- need for a good phenomenological description of the X-ray peak shape

MIBETA: Measurement of response function (2004)

- external X-rays probe only detector surface
- escape peaks allow internal calibration $\triangleright \lambda(6 \text{ keV}) \approx 3 \mu \text{m}$ $\triangleright \lambda(70 \text{ keV}) \approx 400 \mu \text{m}$ in AgReO₄
- escape peaks are broad because of natural widths of atomic transitions

the hidden background is a source of systematic uncertainties

Go underground?

MIBETA: BEFS analysis (2005)

BEFS: Beta Environmental Fine Structure

Modulation of the electron emission probability due to the atomic and molecular surrounding of the decaying nucleus: it is explained by the wave structure of the electron (analogous of EXAFS)

BEFS experimental evidence in ¹⁸⁷Re β decay

■ in AgReO₄ less pronounced than in metallic rhenium

BEFS is a possible source of systematic uncertainties in ¹⁸⁷Re neutrino mass experiments

- ⇒ EXAFS measurements
- \Rightarrow better models

MC analysis of systematics: BEFS

A. Nucciotti, Madison, July 27th 2009 53

MC analysis of systematics: BEFS

A better statistical analysis: analytical vs. MC

Montecarlo analysis

- Many experiment MC simulation
 - \triangleright 90% C.L. m_{ν} sensitivity from $\sqrt{(1.64 \sigma)}$ of m_{ν}^2 distributions
 - ▷ useful for statistical sensitivity and systematic effects analysis

• Simulation inputs

- \triangleright $N_{\rm ev} = N_{\rm det} \times t_{\rm M} \times A_{\beta}$ total number of events
 - N_{det} number of detectors
 - $t_{\rm M}$ measuring time
 - A_{β} ¹⁸⁷Re activity for single detector
- $ightarrow f_{\text{pile-up}} \approx \tau_{\text{R}} \times A_{\beta}$ unresolved pile-up event fraction
 - $\tau_{\rm R} \approx \tau_{\rm rise}$ time resolution for pile-up identification
- \triangleright g(E): detector energy resolution function (usually gaussian)
 - ΔE FWHM detector energy resolution

Assessing systematic uncertainties with Montecarlo simulations
 ▷ generate simulated experimental spectra with systematic effect
 ▷ analyze spectra without effect
 ▷ obtain Δm²_y<0 as function of effect magnitude

Neutrinos masses in single *β* and *ββ*-0*ν* decays

¹⁸⁷Re calorimetric experiment statistical sensitivity

MANU experiment (1999)

- 1.6 mg metallic rhenium single crystal
- one detector only
- Ge-NTD thermistor
 - ▷ *△E*=96 eV FWHM
 - \triangleright symmetric and without tails
- 0.5 years live-time
 - \triangleright 6.0imes10^{6 187}Re decays above 420 eV
 - $m_{\nu}^2 = -462 + 579_{-679} eV^2$
 - $\, \triangleright \, m_{\nu} < 26 \, \mathrm{eV} \, (95 \, \% \, \mathrm{C.L.})$
- first observation of BEFS in ¹⁸⁷Re decay

MIBETA experiment: 2002/03

2.35

2.40

C. Arnaboldi et al., Phys. Rev. Lett. 91 (2003) 161802 M. Sisti et al, NIM A 520 (2004) 125

2.50

2.45

energy [keV]

59

2.55

De Rujula and Lusignoli, Phys. Lett. 118B (1982) 429